Citation: | LI Wan, YIN Xiaojian, MA Yuanyuan, WANG Jinxian, WU Huipan, SHI Lijuan, ZHANG Yingkun, LI Yong. Analysis of the characteristics and related factors of executive function in adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(5): 693-699. doi: 10.16835/j.cnki.1000-9817.2024159 |
[1] |
DIAMOND A. Executive functions[J]. Annu Rev Psychol, 2013, 64: 135-168. doi: 10.1146/annurev-psych-113011-143750
|
[2] |
FRIEDMAN N P, MIYAKE A. Unity and diversity of executive functions: individual differences as a window on cognitive structure[J]. Cortex, 2017, 86: 186-204. doi: 10.1016/j.cortex.2016.04.023
|
[3] |
MUNAKATA Y HERD S A, CHATHAM C H, et al. A unified framework for inhibitory control[J]. Trends Cogn Sci, 2011, 15(10): 453-459. doi: 10.1016/j.tics.2011.07.011
|
[4] |
BADDELEY A. Working memory: theories, models, and controversies[J]. Annu Rev Psychol, 2012, 63: 1-29. doi: 10.1146/annurev-psych-120710-100422
|
[5] |
DAJANI D R, UDDIN L Q. Demystifying cognitive flexibility: implications for clinical and developmental neuroscience[J]. Trends Neurosci, 2015, 38(9): 571-578. doi: 10.1016/j.tins.2015.07.003
|
[6] |
LUCIANA M, BJORK J M, NAGEL B J, et al. Adolescent neurocognitive development and impacts of substance use: overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery[J]. Dev Cogn Neurosci, 2018, 32: 67-79. doi: 10.1016/j.dcn.2018.02.006
|
[7] |
赫中华. 浅析儿童执行功能相关影响因素研究的新进展[J]. 中国校外教育, 2017(24): 61-62. https://www.cnki.com.cn/Article/CJFDTOTAL-XWLL201724047.htm
HE Z H. Analyzing the new progress of research on the influencing factors related to children's executive function[J]. Afterschool Educ China, 2017(24): 61-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XWLL201724047.htm
|
[8] |
LIU Y, ZHANG F, GAN L, et al. Associations between waist circumference and executive function among Chinese Tibetan adolescents living at high altitude[J]. Front Nutr, 2023, 10: 996785. doi: 10.3389/fnut.2023.996785
|
[9] |
丁吉, 万芹, 干敏雷, 等. 青少年家庭环境与抑郁症状的相关性[J]. 中国学校卫生, 2023, 44(5): 677-681. doi: 10.16835/j.cnki.1000-9817.2023.05.009
DING J, WAN Q, GAN M L, et al. Correlation between family environment and depressive symptoms in adolescents[J]. Chin J Sch Health, 2023, 44(5): 677-681. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2023.05.009
|
[10] |
BUYSSE D J, REYNOLDS Ⅲ C F, MONK T H, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research[J]. Psychiatry Res, 1989, 28(2): 193-213. doi: 10.1016/0165-1781(89)90047-4
|
[11] |
武海潭, 干敏雷, 尹小俭, 等. 青少年体力活动与抑郁症状的相关性[J]. 中国学校卫生, 2023, 44(5): 672-676, 681. doi: 10.16835/j.cnki.1000-9817.2023.05.008
WU H T, GAN M L, YIN X J, et al. Correlation between physical activity and depressive symptoms in adolescents[J]. Chin J Sch Health, 2023, 44(5): 672-676, 681. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2023.05.008
|
[12] |
曾祝平, 吴慧攀, 毕存箭, 等. 中国青少年体育锻炼视屏时间与心理亚健康的相关性[J]. 中国学校卫生, 2021, 42(1): 23-27. doi: 10.16835/j.cnki.1000-9817.2021.01.006
ZENG Z P, WU H P, BI C J, et al. Correlation between physical exercise, screen time and mental sub-health among Chinese adolescents[J]. Chin J Sch Health, 2021, 42(1): 23-27. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2021.01.006
|
[13] |
中国学生体质与健康研究组. 2014年中国学生体质与健康调报告[M]. 北京: 高等教育出版社, 2018.
Research Group of Chinese Students' Physical Finess and Health. Report on the physical fitness and health surveillance of Chinese school students[M]. Beijing: Higher Education Press, 2018. (in Chinese)
|
[14] |
WHO. WHO child growth standards[EB/OL]. (2020-11-10)[2024-04-15].
|
[15] |
周剑锋, 卢金逵, 干敏雷, 等. 青少年体能状况与抑郁症状的关联[J]. 中国学校卫生, 2023, 44(5): 654-658. doi: 10.16835/j.cnki.1000-9817.2023.05.004
ZHOU J F, LU J K, GAN M L, et al. Association between physical fitness status and depressive symptoms in adolescents[J]. Chin J Sch Health, 2023, 44(5): 654-658. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2023.05.004
|
[16] |
LAUREYS F, MIDDELBOS L, ROMMERS N, et al. The effects of age, biological maturation and sex on the development of executive functions in adolescents[J]. Front Physiol, 2021, 12: 703312. doi: 10.3389/fphys.2021.703312
|
[17] |
FLORES J C, CASTILLO-PRECIADO R E, JIMÉNEZ-MIRAMONTE N A. Desarrollo de funciones ejecutivas, de la niñez a la juventud (executive functions development from chindhood to youthhood)[J]. Annals Psychol, 2014, 30(2): 463-473.
|
[18] |
ANDERSON P. Assessment and development of executive function (EF) during childhood[J]. Child Neuropsychol, 2002, 8(2): 71-82. doi: 10.1076/chin.8.2.71.8724
|
[19] |
TETERING M A J, LAAN A M, KOGEL C H, et al. Sex differences in self-regulation in early, middle and late adolescence: a large-scale cross-sectional study[J]. PLoS One, 2020, 15(1): e0227607. doi: 10.1371/journal.pone.0227607
|
[20] |
NOBLE K G, HART E R, SPERBER J F. Socioeconomic disparities and neuroplasticity: moving toward adaptation, intersectionality, and inclusion[J]. Am Psychol, 2021, 76(9): 1486. doi: 10.1037/amp0000934
|
[21] |
GRISSOM N M, REYES T M. Let's call the whole thing off: evaluating gender and sex differences in executive function[J]. Neuropsychopharmacology, 2019, 44(1): 86-96. doi: 10.1038/s41386-018-0179-5
|
[22] |
LAWSON G M, HOOK C J, FARAH M J. A Meta-analysis of the relationship between socioeconomic status and executive function performance among children[J]. Dev Sci, 2018, 21(2): e12529. doi: 10.1111/desc.12529
|
[23] |
SARSOUR K, SHERIDAN M, JUTTE D, et al. Family socioeconomic status and child executive functions: the roles of language, home environment, and single parenthood[J]. J Int Neuropsychol Soc, 2011, 17(1): 120-132. doi: 10.1017/S1355617710001335
|
[24] |
ROSEN M L, AMSO D, MCLAUGHLIN K A. The role of the visual association cortex in scaffolding prefrontal cortex development: a novel mechanism linking socioeconomic status and executive function[J]. Dev Cogn, 2019, 39: 100699.
|
[25] |
GROENEVELD M G, SAVAS M, VAN ROSSUM E F C, et al. Children's hair cortisol as a biomarker of stress at school: a follow-up study[J]. Stress, 2020, 23(5): 590-596. doi: 10.1080/10253890.2020.1725467
|
[26] |
BLAIR C. Developmental science and executive function[J]. Curr Dir Psychol Sci, 2016, 25(1): 3-7. doi: 10.1177/0963721415622634
|
[27] |
BLAKE J. The only child in America: prejudice versus performance[J]. Popul Dev Rev, 1981, 7(1): 43-54. doi: 10.2307/1972763
|
[28] |
FALBO T, POLIT D F. Quantitative review of the only child literature: research evidence and theory development[J]. Psychol Bull, 1986, 100(2): 176. doi: 10.1037/0033-2909.100.2.176
|
[29] |
PETROV M E, LICHSTEIN K L, BALDWIN C M. Prevalence of sleep disorders by sex and ethnicity among older adolescents and emerging adults: relations to daytime functioning, working memory and mental health[J]. J Adolesc, 2014, 37(5): 587-597. doi: 10.1016/j.adolescence.2014.04.007
|
[30] |
GONG L, SHI M, WANG J, et al. The abnormal functional connectivity in the locus coeruleus-norepinephrine system associated with anxiety symptom in chronic insomnia disorder[J]. Front Neurosci, 2021, 15: 678465. doi: 10.3389/fnins.2021.678465
|
[31] |
MAKO M, ARIKA Y, FUMIYO N, et al. Impaired executive function in junior high school students with excess sleep time[J]. Vulnerabl Child Youth Stud, 2019, 14(2): 116-12. doi: 10.1080/17450128.2019.1580404
|
[32] |
CONTRERAS-OSORIO F, CAMPOS-JARA C, MARTÍNEZ-SALA-ZAR C, et al. Effects of sport-based interventions on children's executive function: a systematic review and Meta-analysis[J]. Brain Sci, 2021, 11(6): 755. doi: 10.3390/brainsci11060755
|
[33] |
LIU S, YU Q, LI Z, et al. Effects of acute and chronic exercises on executive function in children and adolescents: a systemic review and Meta-analysis[J]. Front Psychol, 2020, 11: 554915. doi: 10.3389/fpsyg.2020.554915
|
[34] |
LEHMANN N, VILLRINGER A, TAUBERT M. Colocalized white matter plasticity and increased cerebral blood flow mediate the beneficial effect of cardiovascular exercise on long-term motor learning[J]. J Neurosci, 2020, 40(12): 2416-2429. doi: 10.1523/JNEUROSCI.2310-19.2020
|
[35] |
EL-SAYES J, HARASYM D, TURCO C V, et al. Exercise-induced neuroplasticity: a mechanistic model and prospects for promoting plasticity[J]. Neuroscientist, 2019, 25(1): 65-85. doi: 10.1177/1073858418771538
|
[36] |
CROVA C, STRUZZOLINO I, MARCHETTI R, et al. Cognitively challenging physical activity benefits executive function in overweight children[J]. J Sport Sci, 2014, 32(3): 201-211. doi: 10.1080/02640414.2013.828849
|
[37] |
DIAMOND A. Effects of physical exercise on executive functions: going beyond simply moving to moving with thought[J]. Ann Sports Med Res, 2015, 2(1): 1011.
|
[38] |
TOMPOROWSKI P D, PESCE C. Exercise, sports, and performance arts benefit cognition via a common process[J]. Psychol Bull, 2019, 145(9): 929. doi: 10.1037/bul0000200
|
[39] |
MOREAU D. Brains and brawn: complex motor activities to maximize cognitive enhancement[J]. Educ Psychol Rev, 2015, 27: 475-482. doi: 10.1007/s10648-015-9323-5
|
[40] |
GENTILE A, BOCA S, DEMETRIOU Y, et al. The influence of an enriched sport program on children's sport motivation in the school context: the ESA program[J]. Front Psychol, 2020, 11: 601000. doi: 10.3389/fpsyg.2020.601000
|
[41] |
LI S, GUO J, ZHENG K, et al. Is sedentary behavior associated with executive function in children and adolescents? A systematic review[J]. Front Public Health, 2022, 10: 832845. doi: 10.3389/fpubh.2022.832845
|
[42] |
SWEETSER P, JOHNSON D, OZDOWSKA A, et al. Active versus passive screen time for young children[J]. Aust J Early Child, 2012, 37(4): 94-98.
|
[43] |
HOROWITZ-KRAUS T, HUTTON J S. Brain connectivity in children is increased by the time they spend reading books and decreased by the length of exposure to screen-based media[J]. Acta Paediatr, 2018, 107(4): 685-693. doi: 10.1111/apa.14176
|
[44] |
BRAINARD G C, HANIFIN J P, GREESON J M, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor[J]. J Neurosci, 2001, 21(16): 6405-6412. doi: 10.1523/JNEUROSCI.21-16-06405.2001
|
[45] |
THAPAN K, ARENDT J, SKENE D J. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans[J]. J Physiol, 2001, 535(1): 261-267. doi: 10.1111/j.1469-7793.2001.t01-1-00261.x
|
[46] |
ZAVALA-CRICHTON J P, ESTEBAN-CORNEJO I, SOLIS-URRA P, et al. Association of sedentary behavior with brain structure and intelligence in children with overweight or obesity: the Active Brains Project[J]. J Clin Med, 2020, 9(4): 1101. doi: 10.3390/jcm9041101
|
[47] |
HUTTON J S, DUDLEY J, HOROWITZ-KRAUS T, et al. Associations between screen-based media use and brain white matter integrity in preschool-aged children[J]. JAMA Pediatr, 2020, 174(1): e193869. doi: 10.1001/jamapediatrics.2019.3869
|
[48] |
KAMIJO K, PONTIFEX M B, KHAN N A, et al. The negative association of childhood obesity to cognitive control of action monitoring[J]. Cereb, 2014, 24(3): 654-662.
|
[49] |
NEDERKOORN C, COELHO J S, GUERRIERI R, et al. Specificity of the failure to inhibit responses in overweight children[J]. Appetite, 2012, 59(2): 409-413. doi: 10.1016/j.appet.2012.05.028
|
[50] |
MAAYAN L, HOOGENDOORN C, SWEAT V, et al. Disinhibited eating in obese adolescents is associated with orbitofrontal volume reductions and executive dysfunction[J]. Obesity, 2011, 19(7): 1382-1387. doi: 10.1038/oby.2011.15
|
[51] |
CHAN J S Y, YAN J H, PAYNE V G. The impact of obesity and exercise on cognitive aging[J]. Front Ag Neurosci, 2013, 5: 97.
|
[52] |
KAMIJO K, PONTIFEX M B, O'LEARY K C, et al. The effects of an afterschool physical activity program on working memory in preadolescent children[J]. Dev Sci, 2011, 14(5): 1046-1058. doi: 10.1111/j.1467-7687.2011.01054.x
|
[53] |
KAO S C, WESTFALL D R, PARKS A C, et al. Muscular and aerobic fitness, working memory, and academic achievement in children[J]. Med Sci Sports Exerc, 2017, 49(3): 500-508. doi: 10.1249/MSS.0000000000001132
|
[54] |
SCUDDER M R, LAMBOURNE K, DROLLETTE E S, et al. Aerobic capacity and cognitive control in elementary school-age children[J]. Med Sci Sports Exerc, 2014, 46(5): 1025. doi: 10.1249/MSS.0000000000000199
|
[55] |
HAVERKAMP B F, OOSTERLAAN J, KONIGS M, et al. Physical fitness, cognitive functioning and academic achievement in healthy adolescents[J]. Psychol Sport Exerc, 2021, 57: 102060. doi: 10.1016/j.psychsport.2021.102060
|
[56] |
LIU Y, HONG J, YIN X, et al. Relationship between cardiorespiratory fitness and executive function of Chinese Tibetan adolescents aged 13-18[J]. J Sci Med Sport, 2023, 26(11): 610-615. doi: 10.1016/j.jsams.2023.09.003
|
[57] |
MUNTANER-MAS A, MORA-GONZALEZ J, CABANAS-SANCHEZ V, et al. Prospective associations between physical fitness and executive function in adolescents: the UP&DOWN study[J]. Psychol Sport Exerc, 2022, 61: 102203. doi: 10.1016/j.psychsport.2022.102203
|