Citation: | ZHENG Quanliang, WANG Tingzhao, SHI Bing, CHI Aiping, NING Ke. Differential characteristics of motor development levels, inhibitory control and cognitive flexibility processing in preschool children[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(2): 258-262. doi: 10.16835/j.cnki.1000-9817.2024060 |
[1] |
BARNETT L M, STODDEN D, COHEN K E, et al. Fundamental movement skills: an important focus[J]. J Teach Phys Educ, 2016, 35(3): 219-225. doi: 10.1123/jtpe.2014-0209
|
[2] |
武志俊, 王争艳, 王强. 动作发展神经科学: 未来路径与布局[J]. 中国科学(生命科学), 2021, 51(6): 619-633. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK202106003.htm
WU Z J, WANG Z Y, WANG Q. The neuroscience of motor development: the future path and layout[J]. Sci Chin (Series C), 2021, 51(6): 619-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK202106003.htm
|
[3] |
杨叶红, 王树明. 动作技能学习神经生理机制研究[J]. 武汉体育学院学报, 2018, 52(8): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-WTXB201808014.htm
YANG Y H, WANG S M. Neurophysiological mechanisms of motor learning[J]. J Wuhan Inst Phys Educ, 2018, 52(8): 85-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WTXB201808014.htm
|
[4] |
CHAMBON V, DOMENECH P, PACHERIE E, et al. What are they up to? The role of sensory evidence and prior knowledge in action understanding[J]. PLoS One, 2011, 6(2): e17133. doi: 10.1371/journal.pone.0017133
|
[5] |
DIAMOND A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex[J]. Child Dev, 2000, 71(1): 44-56. doi: 10.1111/1467-8624.00117
|
[6] |
LUDYGA S, PUHSE U, GERBER M, et al. Core executive functions are selectively related to different facets of motor competence in preadolescent children[J]. Eur J Sport Sci, 2019, 19(3): 375-383. doi: 10.1080/17461391.2018.1529826
|
[7] |
TIEGO J, TESTA R, BELLGROVE M A, et al. A hierarchical model of inhibitory control[J]. Front Psychol, 2018, 9: 1339. doi: 10.3389/fpsyg.2018.01339
|
[8] |
MALAMBO C, NOVA A, CLARK C, et al. Associations between fundamental movement skills, physical fitness, motor competency, physical activity, and executive functions in pre-school age children: a systematic review[J]. Children (Basel), 2022, 9(7): 1059.
|
[9] |
MUSCULUS L, LAUTENBACH F, KNBEl S, et al. An assist for cognitive diagnostics in soccer: two valid tasks measuring inhibition and cognitive flexibility in a soccer-specific setting with a soccer-specific motor response[J]. Front Psychol, 2022, 13: 867849. doi: 10.3389/fpsyg.2022.867849
|
[10] |
VOEGTLE A, REICHERT C, HINRICHS H, et al. Repetitive anodal TDCS to the frontal cortex increases the P300 during working memory processing[J]. Brain Sci, 2022, 12(11): 1545. doi: 10.3390/brainsci12111545
|
[11] |
LI K, YANG J, BECKER B, et al. Functional near-infrared spectroscopy neurofeedback of dorsolateral prefrontal cortex enhances human spatial working memory[J]. Neurophotonics, 2023, 10(2): 025011.
|
[12] |
HILDERLEY A J, WRIGHT F V, TAYLOR M J, et al. Functional neuroplasticity and motor skill change following gross motor interventions for children with diplegic cerebral palsy[J]. Neurorehabil Neural Repair, 2023, 37(1): 16-26. doi: 10.1177/15459683221143503
|
[13] |
TSAI C L, PAN C Y, CHERNG R J, et al. Mechanisms of deficit of visuospatial attention shift in children with developmental coordination disorder: a neurophysiological measure of the endogenous Posner paradigm[J]. Brain Cogn, 2009, 71(3): 246-258. doi: 10.1016/j.bandc.2009.08.006
|
[14] |
HAN X, ZHAO M, KONG Z, et al. Association between fundamental motor skills and executive function in preschool children: a cross-sectional study[J]. Front Psychol, 2022, 13: 978994. doi: 10.3389/fpsyg.2022.978994
|
[15] |
XIE S, GONG C, LU J, et al. Enhancing Chinese preschoolers' executive function via mindfulness training: an fNIRS study[J]. Front Behav Neurosci, 2022, 16: 961797. doi: 10.3389/fnbeh.2022.961797
|
[16] |
WANG J, SAKATA C, MORIGUCHI Y. The neurobehavioral relationship between executive function and creativity during early childhood[J]. Dev Psychobiol, 2021, 63(7): e22191. doi: 10.1002/dev.22191
|
[17] |
HERRMANN C, SEELIG H, FERRARI I, et al. Basic motor competencies of preschoolers: construct, assessment and determinants[J]. Ger J Exerc Sport Res, 2019, 49(2): 179-187. doi: 10.1007/s12662-019-00566-5
|
[18] |
LUDYGA S, MVCKE M, KAMIJO K, et al. The role of motor competences in predicting working memory maintenance and preparatory processing[J]. Child Dev, 2019, 91(3): 799-813.
|
[19] |
ZHENG Q, CHI A, SHI B, et al. Differential features of early childhood motor skill development and working memory processing: evidence from fNIRS[J]. Front Behav Neurosci, 2023, 17: 1279648. doi: 10.3389/fnbeh.2023.1279648
|
[20] |
IACOBUCCI D, POSAVAC S S, KARDES F R, et al. Toward a more nuanced understanding of the statistical properties of a median split[J]. J Consum Psychol, 2015, 25(4): 652-665. doi: 10.1016/j.jcps.2014.12.002
|
[21] |
CHEN Y, YU Y, NIU R, et al. Selective effects of postural control on spatial vs. nonspatial working memory: a functional near-infrared spectral imaging study[J]. Front Hum Neurosci, 2018, 12: 243.
|
[22] |
STRANGMAN G, CULVER J P, THOMPSON J H, et al. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation[J]. Neuroimage, 2002, 17(2): 719-731. doi: 10.1006/nimg.2002.1227
|
[23] |
杨硕, 李亚梦, 付若凡, 等. 3~6岁幼儿粗大动作与执行功能发展特点及关系研究[J]. 中国体育科技, 2022, 58(3): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTY202203007.htm
YANG S, LI Y M, FU R F, et al. Research on the developmental characteristics and relationship between gross movement and executive function of 3 to 6 years old children[J]. China Sport Sci Technol, 2022, 58(3): 51-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTY202203007.htm
|
[24] |
PARK S Y, REINL M, SCHOTT N. Effects of acute exercise at different intensities on fine motor-cognitive dual-task performance while walking: a functional near-infrared spectroscopy study[J]. Eur J Neurosci, 2021, 54(12): 8225-8248. doi: 10.1111/ejn.15241
|
[25] |
POLSKAIA N, ST-AMANT G, FRASER S, et al. Involvement of the prefrontal cortex in motor sequence learning: a functional near-infrared spectroscopy (fNIRS) study[J]. Brain Cogn, 2023, 166: 105940. doi: 10.1016/j.bandc.2022.105940
|
[26] |
宁科, 王庭照, 万炳军, 等. 幼儿基本动作技能对身体活动的影响机制: 感知动作能力中介效应的本土阐释[J]. 体育与科学, 2022, 43(4): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TYYK202204014.htm
NING K, WANG T Z, WAN B J, et al. A study on the influence of young children's fundamental motor skills on physical activity: a local interpretation of the mediating effect of perceived motor competence[J]. Sport Sci, 2022, 43(4): 105-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYYK202204014.htm
|
[27] |
ROH H T, CHO S Y, YOON H G, et al. Effect of exercise intensity on neurotrophic factors and blood-brain barrier permeability induced by oxidative-nitrosative stress in male college students[J]. Int J Sport Nutr Exerc Metab, 2017, 27(3): 239-246. doi: 10.1123/ijsnem.2016-0009
|
[28] |
ARVIDSSON D, JOHANNESSON E, ANDERSEN L B, et al. A longitudinal analysis of the relationships of physical activity and body fat with nerve growth factor and brain-derived neural factor in children[J]. J Phys Act Health, 2018, 15(8): 620-625. doi: 10.1123/jpah.2017-0483
|