Association between light at night and ocular biometric parameters among preschool children
-
摘要:
目的 探究不同光照强度的夜间光照(LAN)与学龄前儿童眼生物参数的关联,为优化儿童近视预防和控制策略提供参考依据。 方法 于2024年11月—2025年1月,采用普查方法选取福建省泉州市1所幼儿园共369名学龄前儿童进行问卷调查和眼部检查,采用便携式光传感设备收集LAN数据。通过Spearman相关性分析探索不同强度的LAN时长与眼生物参数的相关性,广义线性模型探究各强度的LAN时长与眼生物参数的关联,限制性立方样条探究二者间非线性关联。 结果 学龄前儿童等效球镜(SE)、眼轴长度(AL)、眼轴长度与角膜曲率半径比值(AL/CR)分别为0.38(-0.13, 0.63)D,22.35(21.86, 22.88)mm,2.86(2.82, 2.90)。儿童在LAN处于0,>0~100,>100~300和>300 lx的时长中位数分别为6.09(5.31, 6.74),1.74(1.13, 2.42),0.06(0.00, 0.26)和0.00(0.00, 0.00)h/d。广义线性模型显示,>100~300 lx的LAN每增加1 h,AL/CR增加0.26(95%CI=0.01~0.52),>300 lx的LAN每增加1 h,AL/CR增加0.32(95%CI=0.05~0.59)(P值均 < 0.05);SE和AL与0,>0~100,>100~300和>300 lx各水平的LAN相关性均无统计学意义(P值均>0.05)。限制性立方样条函数的模型显示,除在>100~300 lx的LAN时长与AL之间存在非线性关系(P=0.02)外,其他光照强度水平下的LAN时长与学龄前儿童SE、AL、AL/CR均呈线性关系(P值均>0.05)。按时间分类进行亚组分析表明,上学日期间>100~300和>300 lx的LAN时长增加1 h,AL/CR分别增加0.18(95%CI=0.01~0.35)和0.22(95%CI=0.03~0.41)(P值均 < 0.05);而周末其关联无统计学意义(P值均>0.05)。 结论 较高强度的LAN与学龄前儿童AL/CR增长相关,减少LAN暴露对学龄前儿童视力具有潜在保护作用。 Abstract:Objective To explore the association between light at night (LAN) of different intensities and ocular biometric parameters among preschool children, so as to provide a reference for optimizing strategies for myopia prevention and control. Methods From November 2024 to January 2025, a cross-sectional study was conducted among 369 preschool children from one kindergarten in Quanzhou City, Fujian Province. Questionnaire survey and eye examination were performed, and portable light sensors were used to collect LAN exposure data. Spearman correlation analysis was used to examine the associations between the duration of LAN exposure at different intensities and ocular biometric parameters. Generalized linear model was employed to explore the relationships between LAN duration at various intensities and ocular biometric parameters, while restricted cubic spline was used to investigate potential nonlinear associations. Results The spherical equivalent (SE), axial length (AL), and axial length/corneal radius of curvature (AL/CR) for preschool children were 0.38 (-0.13, 0.63) diopters, 22.35 (21.86, 22.88) mm, and 2.86 (2.82, 2.90), respectively. The median daily duration (interquartile ranges) of LAN exposure at intensities of 0, >0-100, >100-300, and >300 lx were 6.09(5.31, 6.74), 1.74(1.13, 2.42), 0.06(0.00, 0.26), 0.00(0.00, 0.00)h/d, respectively. The generalized linear model showed that for every additional hour of LAN at >100-300 lx, the AL/CR increased by 0.26 (95%CI=0.01-0.52); for every additional hour of LAN at >300 lx, AL/CR increased by 0.32 (95%CI=0.05-0.59) (both P < 0.05). No statistically significant associations were observed between SE or AL and LAN exposure at any of the intensity levels (0, >0-100, >100-300, and >300 lx) (all P>0.05). The restricted cubic spline model revealed that, except for the nonlinear relationship between LAN duration and AL at >100-300 lx (P=0.02), all other light intensity levels showed linear correlations between LAN duration and preschool children's SE, AL, and AL/CR (both P>0.05). Time-of-day subgroup analysis revealed that during school days, for every additional hour of LAN at >100-300 lx and over 300 lx, AL/CR increased by 0.18 (95%CI=0.01-0.35) and 0.22 (95%CI=0.03-0.41), respectively (both P < 0.05). However, weekend exposure showed no statistically significant association (all P>0.05). Conclusion Higher intensity of LAN is associated with increased AL/CR, and reducing exposure to LAN may have a potential protective effect on the visual health of preschool children. -
Key words:
- Light /
- Environmental exposure /
- Eye /
- Child, preschool
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 LAN强度与学龄前儿童眼部参数关联的线性模型分析(n=369)
Table 1. Linear model analysis of association between LAN and ocular parameters among preschool children(n=369)
LAN强度/lx SE AL AL/CR β值(95%CI) P值 β值(95%CI) P值 β值(95%CI) P值 0 -0.63(-3.01~1.75) 0.60 0.55(-1.99~3.09) 0.67 0.25(-0.01~0.50) 0.06 >0~100 -0.59(-2.97~1.80) 0.63 0.51(-2.04~3.05) 0.70 0.25(-0.01~0.50) 0.06 >100~300 -0.75(-3.14~1.64) 0.54 0.64(-1.92~3.19) 0.63 0.26(0.01~0.52) 0.05 >300 -0.03(-2.57~2.50) 0.98 0.47(-2.23~3.18) 0.73 0.32(0.05~0.59) 0.02 注:模型调整了年龄、性别、父母视力情况、午睡时长、使用电子设备时长、其他近距离用眼时长、夜间睡眠时长和关灯后是否继续使用电子产品。 表 2 LAN与学龄前儿童眼部参数关联的时间与性别分层分析(n=369)
Table 2. Time and sex stratified analysis of the association between LAN and ocular parameters among preschool children(n=369)
分层变量 LAN强度/lx SE AL AL/CR β值(95%CI) P值 β值(95%CI) P值 β值(95%CI) P值 时间 上学日 0 -0.41(-2.00~1.18) 0.61 0.30(-1.38~1.99) 0.72 0.16(-0.01~0.33) 0.06 >0~100 -0.37(-1.96~1.22) 0.65 0.24(-1.45~1.93) 0.78 0.16(-0.01~0.33) 0.06 >100~300 -0.51(-2.11~1.08) 0.53 0.40(-1.29~2.10) 0.64 0.18(0.01~0.35) 0.04 >300 -0.05(-1.76~1.87) 0.95 0.20(-1.72~2.13) 0.84 0.22(0.03~0.41) 0.03 周末 0 -0.35(-0.99~0.30) 0.29 -0.02(-0.70~0.68) 0.97 -0.05(-0.12~0.02) 0.27 >0~100 -0.32(-0.96~0.33) 0.34 0.01(-0.68~0.70) 0.98 -0.05(-0.12~0.02) 0.18 >100~300 -0.43(-1.09~0.23) 0.21 0.03(-0.68~0.74) 0.94 -0.04(-0.11~0.03) 0.25 >300 - - - - - - 性别 男童 0 -2.67(-6.78~1.45) 0.21 2.93(-2.10~7.97) 0.25 0.26(-0.25~0.77) 0.32 >0~100 -2.67(-6.79~1.46) 0.21 2.88(-2.16~7.92) 0.26 0.26(-0.25~0.77) 0.32 >100~300 -2.93(-7.07~1.20) 0.17 3.11(-1.94~8.16) 0.23 0.28(-0.23~0.79) 0.29 >300 -0.95(-5.48~3.59) 0.68 3.34(-2.20~8.89) 0.24 0.49(-0.07~1.05) 0.11 女童 0 -2.67(-6.78~1.45) 0.21 2.93(-2.10~7.97) 0.25 0.26(-0.25~0.77) 0.32 >0~100 -2.67(-6.79~1.46) 0.21 2.88(-2.16~7.92) 0.26 0.26(-0.25~0.77) 0.32 >100~300 -2.93(-7.07~1.20) 0.17 3.11(-1.94~8.16) 0.23 0.28(-0.23~0.79) 0.29 >300 -0.93(-5.48~3.59) 0.68 3.34(-2.20~8.89) 0.24 0.49(-0.07~1.05) 0.09 注:模型调整了年龄、父母视力情况、午睡时长、使用电子设备时长、其他近距离用眼时长、夜间睡眠时长和关灯后是否继续使用电子产品。-表示由于样本量的限制,模型无法拟合。 -
[1] HOLEDN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. [2] PAN W, SAW S M, WONG T Y, et al. Prevalence and temporal trends in myopia and high myopia children in China: a systematic review and Meta-analysis with projections from 2020 to 2050[J]. Lancet Reg Health West Pac, 2025, 55: 101484. [3] HAARMAN A E G, ENTHOVEN C A, TIDEMAN J W L, et al. The complications of myopia: a review and Meta-analysis[J]. Invest Ophthalmol Vis Sci, 2020, 61(4): 49. [4] WONG T Y, FERREIRA A, HUGHES R, et al. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review[J]. Am J Ophthalmol, 2014, 157(1): 9-25. e12. [5] LANCA C, REPKA M X, GRZYBOWSKI A. Myths in myopia epidemiology and treatment[J]. JAMA Ophthalmol, 2024, 142(5): 403-404. [6] NAIDOO K S, FRICKE T R, FRICK K D, et al. Potential lost productivity resulting from the global burden of myopia: systematic review, Meta-analysis, and modeling[J]. Ophthalmology, 2019, 126(3): 338-346. [7] CHEN X, GILES J, YAO Y, et al. The path to healthy ageing in China: a Peking University-Lancet commission[J]. Lancet, 2022, 400(10367): 1967-2006. [8] HE X, SANKARIDURG P, WANG J, et al. Time outdoors in reducing myopia: a school-based cluster randomized trial with objective monitoring of outdoor time and light intensity[J]. Ophthalmology, 2022, 129(11): 1245-1254. [9] QUINN G E, SHIN C H, MAGUIRE M G, et al. Myopia and ambient lighting at night[J]. Nature, 1999, 399(6732): 113-114. [10] LOMAN J, QUINN G E, KAMOUN L, et al. Darkness and near work: myopia and its progression in third-year law students[J]. Ophthalmology, 2002, 109(5): 1032-1038. [11] LIU T, TAN W, FU Y, et al. Association of outdoor artificial light at night with myopia among Chinese adolescents: a representative cross-sectional study[J]. Front Med, 2024, 11: 1469422. [12] CHEN J, WANG J, QI Z, et al. Smartwatch measures of outdoor exposure and myopia in children[J]. JAMA Netw Open, 2024, 7(8): e2424595. [13] GWIAZDA J, ONG E, HELD R, et al. Myopia and ambient night-time lighting[J]. Nature, 2000, 404(6774): 144. [14] LANDIS E G, YANG V, BROWN D M, et al. Dim light exposure and myopia in children[J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 4804-4811. [15] HE X, ZOU H, LU L, et al. Axial length/corneal radius ratio: association with refractive state and role on myopia detection combined with visual acuity in Chinese school children[J]. PLoS One, 2015, 10(2): e0111766. [16] MU J, ZENG D, FAN J, et al. The accuracy of the axial length and axial length/corneal radius ratio for myopia assessment among Chinese children[J]. Front Pediatr, 2022, 10: 859944. [17] OMOTO M K, TORⅡ H, HAYASHI K, et al. Ratio of axial length to corneal radius in Japanese patients and accuracy of intraocular lens power calculation based on biometric data[J]. Am J Ophthalmol, 2020, 218: 320-329. [18] YIN Y, LI L, WANG T, et al. Establishment of noncycloplegic methods for screening myopia and pre-myopia in preschool children[J]. Front Med, 2023, 10: 1291387. [19] MEYER N, HARVEY A G, LOCKLEY S W, et al. Circadian rhythms and disorders of the timing of sleep[J]. Lancet, 2022, 400(10357): 1061-1078. [20] CHEN S K, BADEA T C, HATTAR S. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs[J]. Nature, 2011, 476(7358): 92-95. [21] HYSI P G, INC A, CHOQUET H, et al. Meta-analysis of 542 934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia[J]. Nat Genet, 2020, 52(4): 401-407. [22] JOCKERS R, MAURICE P, BOUTIN J A, et al. Melatonin receptors, heterodimerization, signal transduction and binding sites: what's new?[J]. Br J Pharmacol, 2008, 154(6): 1182-1195. [23] LIU X N, YAP S E L, CHEN X E, et al. Late bedtime and altered diurnal axial length rhythms of the eye[J]. Curr Eye Res, 2025, 50(1): 101-109. [24] HU Y, YU M, HAN X, et al. Behavioral intervention with eye-use monitoring to delay myopia onset and progression in children: a cluster randomized trial[J]. Ophthalmology, 2025, 132(6): 701-712. [25] FOREMAN J, SALIM A T, PRAVEEN A, et al. Association between digital smart device use and myopia: a systematic review and Meta-analysis[J]. Lancet Digit Health, 2021, 3(12): e806-e818. [26] YING Z Q, LI D L, ZHENG X Y, et al. Risk factors for myopia among children and adolescents: an umbrella review of published Meta-analyses and systematic reviews[J]. Br J Ophthalmol, 2024, 108(2): 167-174. [27] SHI D, DANG J, CHEN H, et al. Assessment of indoor light-at-night exposure in children and adolescents during schooldays and weekends[J]. Environ Pollut, 2024, 360: 124689. -
点击查看大图
计量
- 文章访问数: 4
- HTML全文浏览量: 5
- PDF下载量: 0
- 被引次数: 0
下载: