留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能技术在儿童青少年心理健康服务中的应用研究进展

张露丹 李瑶瑶 李秋荣 卢金逵 牛志宁

张露丹, 李瑶瑶, 李秋荣, 卢金逵, 牛志宁. 人工智能技术在儿童青少年心理健康服务中的应用研究进展[J]. 中国学校卫生, 2025, 46(10): 1511-1515. doi: 10.16835/j.cnki.1000-9817.2025310
引用本文: 张露丹, 李瑶瑶, 李秋荣, 卢金逵, 牛志宁. 人工智能技术在儿童青少年心理健康服务中的应用研究进展[J]. 中国学校卫生, 2025, 46(10): 1511-1515. doi: 10.16835/j.cnki.1000-9817.2025310
ZHANG Ludan, LI Yaoyao, LI Qiurong, LU Jinkui, NIU Zhining. Research progress on the application of artificial intelligence technology in mental health services among children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2025, 46(10): 1511-1515. doi: 10.16835/j.cnki.1000-9817.2025310
Citation: ZHANG Ludan, LI Yaoyao, LI Qiurong, LU Jinkui, NIU Zhining. Research progress on the application of artificial intelligence technology in mental health services among children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2025, 46(10): 1511-1515. doi: 10.16835/j.cnki.1000-9817.2025310

人工智能技术在儿童青少年心理健康服务中的应用研究进展

doi: 10.16835/j.cnki.1000-9817.2025310
基金项目: 

国家社会科学基金项目 21CSH031

详细信息
    作者简介:

    张露丹(1983-),女,山东威海人,博士,副教授,主要研究方向为青少年心理健康

    通讯作者:

    牛志宁,E-mail: 4142870@163.com

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R179 G444 TP18

Research progress on the application of artificial intelligence technology in mental health services among children and adolescents

  • 摘要: 人工智能(AI)技术在心理健康领域的应用日益深入,儿童青少年作为数字原生代,其心理健康问题的预防、识别和干预正经历着由传统模式向智能化、数字化模式的重大转变。当前,中国儿童青少年心理健康状况不容乐观,抑郁、焦虑等情绪障碍呈现低龄化趋势,而传统的心理健康服务模式面临着专业人员不足、服务可及性低、早期识别困难等多重挑战。研究系统梳理了AI技术在儿童青少年心理健康服务中的应用现状,包括筛查评估、干预治疗等方面最新进展;深入分析当前面临的关键挑战;提出促进AI技术与儿童青少年心理健康服务深度融合的建议,为推动心理健康服务的智能化、精准化和普惠化发展提供理论支撑和实践指导。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • [1] 宋逸, 马军. 全面促进中国儿童青少年心理健康发展[J]. 中华流行病学杂志, 2023, 44(10): 1531-1536.

    SONG Y, MA J. Promoting the mental health of Chinese children and adolescents comprehensively[J]. Chin J Epidemiol, 2023, 44(10): 1531-1536. (in Chinese)
    [2] 郑璐, 吕晓虹. 人工智能技术赋能大学生心理健康教育探析[J]. 锦州医科大学学报(社会科学版), 2025, 23(4): 87-89.

    ZHENG L, LV X H. Analysis of empowering college students' mental health education with artificial intelligence technology[J]. J Jinzhou Med Univ Soc Sci Ed, 2025, 23(4): 87-89. (in Chinese)
    [3] 庞红卫, 王翠芳, 李刚, 等. 基于人工智能的学生心理健康监测与评价体系的构建[J]. 教育测量与评价, 2022(3): 31-39.

    PANG H W, WANG C F, LI G, et al. The construction of student mental health monitoring and evaluation system based on artificial intelligence[J]. Educ Meas Eval, 2022(3): 31-39. (in Chinese)
    [4] 王伟军, 刘辉, 王玮, 等. 中小学生网络素养及其评价指标体系研究[J]. 华中师范大学学报(人文社会科学版), 2021, 60(1): 165-173.

    WANG W J, LIU H, WANG W, et al. Research on the evaluating indicators system of Internet literacy for K12 students[J]. J Cent China Norm Univ Humanit Soc Sci, 2021, 60(1): 165-173. (in Chinese)
    [5] MCGROW K. Artificial intelligence: essentials for nursing[J]. Nursing, 2019, 49(9): 46-49.
    [6] ROBERT N. How artificial intelligence is changing nursing[J]. Nurs Manage, 2019, 50(9): 30-39.
    [7] VON GERICH H, MOEN H, BLOCK L J, et al. Artificial Intelligence-based technologies in nursing: a scoping literature review of the evidence[J]. Int J Nurs Stud, 2022, 127: 104153.
    [8] MAHAMAD S, CHIN Y H, ZULMUKSAH N I N, et al. Technical review: architecting an AI-driven decision support system for enhanced online learning and assessment[J]. Future Internet, 2025, 17(9): 383.
    [9] VANHOOK C, ABUSUAMPEH D, POLLARD J. Leveraging generative AI to simulate mental healthcare access and utilization[J]. Front Health Serv, 2025, 5: 1654106.
    [10] KHAN A, LIU Q, WANG K. iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes[J]. BMC Bioinformatics, 2018, 19(Suppl 17): 501.
    [11] THOMPSON P M, VIDAL C, GIEDD J N, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia[J]. Proc Natl Acad Sci USA, 2001, 98(20): 11650-11655.
    [12] KALMADY S V, GREINER R, AGRAWAL R, et al. Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning[J]. NPJ Schizophr, 2019, 5(1): 2.
    [13] SRINIVASAN K, MAHENDRAN N, VINCENT D R, et al. Realizing an integrated multistage support vector machine model for augmented recognition of unipolar depression[J]. Electronics, 2020, 9(4): 647.
    [14] NICHOLS J A, HERBERT CHAN H W, BAKER M A B. Machine learning: applications of artificial intelligence to imaging and diagnosis[J]. Biophys Rev, 2019, 11(1): 111-118.
    [15] BOHATEREWICZ B, SOBCZAK A M, PODOLAK I, et al. Machine learning-based identification of suicidal risk in patients with schizophrenia using multi-level resting-state fMRI features[J]. Front Neurosci, 2020, 14: 605697.
    [16] JAVED A R, SAADIA A, MUGHAL H, et al. Artificial intelligence for cognitive health assessment: state-of-the-art, open challenges and future directions[J]. Cogn Comput, 2023, 15(6): 1767-1812.
    [17] ZHENG Z, ZHENG P, ZOU X. Peripheral blood S100B levels in autism spectrum disorder: a systematic review and Meta-analysis[J]. J Autism Dev Disord, 2021, 51(8): 2569-2577.
    [18] AI M, KUANG L. Research progress on artificial intelligence in early warning of suicide and self-harm risk in adolescents[J]. J Int Psychiatry, 2024, 51(4): 1014-1017.
    [19] WALSH C G, RIBEIRO J D, FRANKLIN J C. Predicting risk of suicide attempts over time through machine learning[J]. Clin Psychol Sci, 2017, 5(3): 457-469.
    [20] FERNANDES A C, DUTTA R, VELUPILLAI S, et al. Identifying suicide ideation and suicidal attempts in a psychiatric clinical research database using natural language processing[J]. Sci Rep, 2018, 8(1): 7426.
    [21] EDGCOMB J B, TSENG C H, PAN M, et al. Assessing detection of children with suicide-related emergencies: evaluation and development of computable phenotyping approaches[J]. JMIR Ment Health, 2023, 10: e47084.
    [22] STEWART S L, CELEBRE A, HIRDES J P, et al. Risk of suicide and self-harm in kids: the development of an algorithm to identify high-risk individuals within the children's mental health system[J]. Child Psychiatry Hum Dev, 2020, 51(6): 913-924.
    [23] CUMMINS N, SCHERER S, KRAJEWSKI J, et al. A review of depression and suicide risk assessment using speech analysis[J]. Speech Commun, 2015, 71: 10-49.
    [24] INKSTER B, SARDA S, SUBRAMANIAN V. An empathy-driven, conversational artificial intelligence agent (wysa) for digital mental well-being: real-world data evaluation mixed-methods study[J]. JMIR Mhealth Uhealth, 2018, 6(11): e12106.
    [25] 张正, 孟芸, 王园园. 数字疗法在青少年社交焦虑障碍干预中的应用、发展与挑战[J]. 实用医学杂志, 2025, 41(10): 1439-1444.

    ZHANG Z, MENG Y, WANG Y Y. Application, development, and challenges of digital therapeutics in interventions for adolescent social anxiety disorder[J]. J Pract Med, 2025, 41(10): 1439-1444. (in Chinese)
    [26] FITZPATRICK K K, DARCY A, VIERHILE M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (woebot): a randomized controlled trial[J]. JMIR Ment Health, 2017, 4(2): e19.
    [27] GHOSH C C, MCVICAR D, DAVIDSON G, et al. What can we learn about the psychiatric diagnostic categories by analysing patients' lived experiences with machine-learning?[J]. BMC Psychiatry, 2022, 22(1): 427.
    [28] ABDULLAH S, MATTHEWS M, FRANK E, et al. Automatic detection of social rhythms in bipolar disorder[J]. J Am Med Inform Assoc, 2016, 23(3): 538-543.
    [29] CUMMINS N, MATCHAM F, KLAPPER J, et al. Artificial intelligence to aid the detection of mood disorders[M]//BARH D. Artificial intelligence in precision health. Academic Press, NewYork: Academic Press, 2020: 231-255.
    [30] MILLAR L, MCCONNACHIE A, MINNIS H, et al. Phase 3 diagnostic evaluation of a smart tablet serious game to identify autism in 760 children 3-5 years old in Sweden and the United Kingdom[J]. BMJ Open, 2019, 9(7): e026226.
    [31] 王丽梅, 李仲, 古天. 人工智能赋能心理健康教育的技术基础与应用图谱[J]. 中小学信息技术教育, 2025(7): 38-40.

    WANG L M, LI Z, GU T. Technical basis and application map of mental health education with artificial intelligence empowerment[J]. Inform Technol Educ Prim Sec Sch, 2025(7): 38-40. (in Chinese)
    [32] POSADA J D, BARDA A J, SHI L, et al. Predictive modeling for classification of positive valence system symptom severity from initial psychiatric evaluation records[J]. J Biomed Inform, 2017, 75S: S94-S104.
    [33] LEVKOVICH I, ELYOSEPH Z. Suicide risk assessments through the eyes of ChatGPT-3.5 versus ChatGPT-4: vignette study[J]. JMIR Ment Health, 2023, 10: e51232.
    [34] BAIN E E, SHAFNER L, WALLING D P, et al. Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia[J]. JMIR Mhealth Uhealth, 2017, 5(2): e18.
    [35] ATHREYA A P, VANDE VOORT J L, SHEKUNOV J, et al. Evidence for machine learning guided early prediction of acute outcomes in the treatment of depressed children and adolescents with antidepressants[J]. J Child Psychol Psychiatry, 2022, 63(11): 1347-1358.
    [36] VAIDYAM A N, WISNIEWSKI H, HALAMKA J D, et al. Chatbots and conversational agents in mental health: a review of the psychiatric landscape[J]. Can J Psychiatry, 2019, 64(7): 456-464.
    [37] ORSOLINI L, POMPILI S, SALVI V, et al. A systematic review on TeleMental health in youth mental health: focus on anxiety, depression and obsessive-compulsive disorder[J]. Medicina, 2021, 57(8): 793.
    [38] MORTIMER R, SOMERVILLE M P, MECHLER J, et al. Connecting over the Internet: establishing the therapeutic alliance in an Internet-based treatment for depressed adolescents[J]. Clin Child Psychol Psychiatry, 2022, 27(3): 549-568.
    [39] KHALAF A M, ALUBIED A A, KHALAF A M, et al. The impact of social media on the mental health of adolescents and young adults: a systematic review[J]. Cureus, 2023, 15(8): e42990.
    [40] LEHTIMAKI S, MARTIC J, WAHL B, et al. Evidence on digital mental health interventions for adolescents and young people: systematic overview[J]. JMIR Ment Health, 2021, 8(4): e25847.
    [41] OPEL D J, KIOUS B M, COHEN I G. AI as a mental health therapist for adolescents[J]. JAMA Pediatr, 2023, 177(12): 1253-1254.
    [42] DENECKE K, ABD-ALRAZAQ A, HOUSEH M. Artificial intelligence for chatbots in mental health: opportunities and challenges[M]//HOUSEH M, BORYCKI E, KUSHNIRUK A. Multiple perspectives on artificial intelligence in healthcare. Cham: Springer International Publishing, 2021: 115-128.
    [43] AHMED A, HASSAN A, AZIZ S, et al. Chatbot features for anxiety and depression: a scoping review[J]. Health Informatics J, 2023, 29(1): 14604582221146719.
    [44] ROMAEL HAQUE M D, RUBYA S. An overview of chatbot-based mobile mental health apps: insights from app description and user reviews[J]. JMIR Mhealth Uhealth, 2023, 11: e44838.
    [45] GOMES P V, SÁ V J, DONGA J, et al. The use of artificial intelligence in interactive virtual reality adaptive environments with real-time biofeedback applied to phobias psychotherapy[J]. Proceedings XoveTIC, 2023, 10: 275-279.
    [46] CHESHAM R K, MALOUFF J M, SCHUTTE N S. Meta-analysis of the efficacy of virtual reality exposure therapy for social anxiety[J]. Behav Change, 2018, 35(3): 152-166.
    [47] CHANG J C, LIN H Y, LV J, et al. Regional brain volume predicts response to methylphenidate treatment in individuals with ADHD[J]. BMC Psychiatry, 2021, 21(1): 26.
    [48] ACHARYA U R, OH S L, HAGIWARA Y, et al. Automated EEG-based screening of depression using deep convolutional neural network[J]. Comput Methods Programs Biomed, 2018, 161: 103-113.
    [49] ZOU L, ZHENG J, MIAO C, et al. 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI[J]. IEEE Access, 2017, 5: 23626-23636.
    [50] RIAD R, DENAIS M, DE GENNES M, et al. Automated speech analysis for risk detection of depression, anxiety, insomnia, and fatigue: algorithm development and validation study[J]. J Med Internet Res, 2024, 26: e58572.
    [51] THAKKAR A, GUPTA A, DE SOUSA A. Artificial intelligence in positive mental health: a narrative review[J]. Front Digit Health, 2024, 6: 1280235.
    [52] MINERVA F, GIUBILINI A. Is AI the future of mental healthcare?[J]. Topoi (Dordr), 2023, 42(3): 1-9.
    [53] 梁朋, 郭玲, 李秋雨. 生成式人工智能视角下大学生心理健康教育研究[J]. 佛山科学技术学院学报(社会科学版), 2024, 42(4): 96-100.

    LIANG P, GUO L, LI Q Y. Research on mental health education for college students from the perspective of generative artificial intelligence[J]. J Foshan Univ Soc Sci Ed, 2024, 42(4): 96-100. (in Chinese)
    [54] MIOTTO R, WANG F, WANG S, et al. Deep learning for healthcare: review, opportunities and challenges[J]. Brief Bioinform, 2018, 19(6): 1236-1246.
    [55] INIESTA R, STAHL D, MCGUFFIN P. Machine learning, statistical learning and the future of biological research in psychiatry[J]. Psychol Med, 2016, 46(12): 2455-2465.
    [56] 朱廷劭. 试析通用人工智能在心理学领域的应用[J]. 人民论坛·学术前沿, 2023(14): 86-91, 101.

    ZHU T S. An analysis of the application of AGI in the field of psychology[J]. Frontiers, 2023(14): 86-91, 101. (in Chinese)
    [57] DICUONZO G, DONOFRIO F, FUSCO A, et al. Healthcare system: moving forward with artificial intelligence[J]. Technovation, 2023, 120: 102510.
  • 加载中
计量
  • 文章访问数:  7
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-28
  • 修回日期:  2025-09-23
  • 刊出日期:  2025-10-25

目录

    /

    返回文章
    返回