| [1] |
宋逸, 马军. 全面促进中国儿童青少年心理健康发展[J]. 中华流行病学杂志, 2023, 44(10): 1531-1536.SONG Y, MA J. Promoting the mental health of Chinese children and adolescents comprehensively[J]. Chin J Epidemiol, 2023, 44(10): 1531-1536. (in Chinese)
|
| [2] |
郑璐, 吕晓虹. 人工智能技术赋能大学生心理健康教育探析[J]. 锦州医科大学学报(社会科学版), 2025, 23(4): 87-89.ZHENG L, LV X H. Analysis of empowering college students' mental health education with artificial intelligence technology[J]. J Jinzhou Med Univ Soc Sci Ed, 2025, 23(4): 87-89. (in Chinese)
|
| [3] |
庞红卫, 王翠芳, 李刚, 等. 基于人工智能的学生心理健康监测与评价体系的构建[J]. 教育测量与评价, 2022(3): 31-39.PANG H W, WANG C F, LI G, et al. The construction of student mental health monitoring and evaluation system based on artificial intelligence[J]. Educ Meas Eval, 2022(3): 31-39. (in Chinese)
|
| [4] |
王伟军, 刘辉, 王玮, 等. 中小学生网络素养及其评价指标体系研究[J]. 华中师范大学学报(人文社会科学版), 2021, 60(1): 165-173.WANG W J, LIU H, WANG W, et al. Research on the evaluating indicators system of Internet literacy for K12 students[J]. J Cent China Norm Univ Humanit Soc Sci, 2021, 60(1): 165-173. (in Chinese)
|
| [5] |
MCGROW K. Artificial intelligence: essentials for nursing[J]. Nursing, 2019, 49(9): 46-49.
|
| [6] |
ROBERT N. How artificial intelligence is changing nursing[J]. Nurs Manage, 2019, 50(9): 30-39.
|
| [7] |
VON GERICH H, MOEN H, BLOCK L J, et al. Artificial Intelligence-based technologies in nursing: a scoping literature review of the evidence[J]. Int J Nurs Stud, 2022, 127: 104153.
|
| [8] |
MAHAMAD S, CHIN Y H, ZULMUKSAH N I N, et al. Technical review: architecting an AI-driven decision support system for enhanced online learning and assessment[J]. Future Internet, 2025, 17(9): 383.
|
| [9] |
VANHOOK C, ABUSUAMPEH D, POLLARD J. Leveraging generative AI to simulate mental healthcare access and utilization[J]. Front Health Serv, 2025, 5: 1654106.
|
| [10] |
KHAN A, LIU Q, WANG K. iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes[J]. BMC Bioinformatics, 2018, 19(Suppl 17): 501.
|
| [11] |
THOMPSON P M, VIDAL C, GIEDD J N, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia[J]. Proc Natl Acad Sci USA, 2001, 98(20): 11650-11655.
|
| [12] |
KALMADY S V, GREINER R, AGRAWAL R, et al. Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning[J]. NPJ Schizophr, 2019, 5(1): 2.
|
| [13] |
SRINIVASAN K, MAHENDRAN N, VINCENT D R, et al. Realizing an integrated multistage support vector machine model for augmented recognition of unipolar depression[J]. Electronics, 2020, 9(4): 647.
|
| [14] |
NICHOLS J A, HERBERT CHAN H W, BAKER M A B. Machine learning: applications of artificial intelligence to imaging and diagnosis[J]. Biophys Rev, 2019, 11(1): 111-118.
|
| [15] |
BOHATEREWICZ B, SOBCZAK A M, PODOLAK I, et al. Machine learning-based identification of suicidal risk in patients with schizophrenia using multi-level resting-state fMRI features[J]. Front Neurosci, 2020, 14: 605697.
|
| [16] |
JAVED A R, SAADIA A, MUGHAL H, et al. Artificial intelligence for cognitive health assessment: state-of-the-art, open challenges and future directions[J]. Cogn Comput, 2023, 15(6): 1767-1812.
|
| [17] |
ZHENG Z, ZHENG P, ZOU X. Peripheral blood S100B levels in autism spectrum disorder: a systematic review and Meta-analysis[J]. J Autism Dev Disord, 2021, 51(8): 2569-2577.
|
| [18] |
AI M, KUANG L. Research progress on artificial intelligence in early warning of suicide and self-harm risk in adolescents[J]. J Int Psychiatry, 2024, 51(4): 1014-1017.
|
| [19] |
WALSH C G, RIBEIRO J D, FRANKLIN J C. Predicting risk of suicide attempts over time through machine learning[J]. Clin Psychol Sci, 2017, 5(3): 457-469.
|
| [20] |
FERNANDES A C, DUTTA R, VELUPILLAI S, et al. Identifying suicide ideation and suicidal attempts in a psychiatric clinical research database using natural language processing[J]. Sci Rep, 2018, 8(1): 7426.
|
| [21] |
EDGCOMB J B, TSENG C H, PAN M, et al. Assessing detection of children with suicide-related emergencies: evaluation and development of computable phenotyping approaches[J]. JMIR Ment Health, 2023, 10: e47084.
|
| [22] |
STEWART S L, CELEBRE A, HIRDES J P, et al. Risk of suicide and self-harm in kids: the development of an algorithm to identify high-risk individuals within the children's mental health system[J]. Child Psychiatry Hum Dev, 2020, 51(6): 913-924.
|
| [23] |
CUMMINS N, SCHERER S, KRAJEWSKI J, et al. A review of depression and suicide risk assessment using speech analysis[J]. Speech Commun, 2015, 71: 10-49.
|
| [24] |
INKSTER B, SARDA S, SUBRAMANIAN V. An empathy-driven, conversational artificial intelligence agent (wysa) for digital mental well-being: real-world data evaluation mixed-methods study[J]. JMIR Mhealth Uhealth, 2018, 6(11): e12106.
|
| [25] |
张正, 孟芸, 王园园. 数字疗法在青少年社交焦虑障碍干预中的应用、发展与挑战[J]. 实用医学杂志, 2025, 41(10): 1439-1444.ZHANG Z, MENG Y, WANG Y Y. Application, development, and challenges of digital therapeutics in interventions for adolescent social anxiety disorder[J]. J Pract Med, 2025, 41(10): 1439-1444. (in Chinese)
|
| [26] |
FITZPATRICK K K, DARCY A, VIERHILE M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (woebot): a randomized controlled trial[J]. JMIR Ment Health, 2017, 4(2): e19.
|
| [27] |
GHOSH C C, MCVICAR D, DAVIDSON G, et al. What can we learn about the psychiatric diagnostic categories by analysing patients' lived experiences with machine-learning?[J]. BMC Psychiatry, 2022, 22(1): 427.
|
| [28] |
ABDULLAH S, MATTHEWS M, FRANK E, et al. Automatic detection of social rhythms in bipolar disorder[J]. J Am Med Inform Assoc, 2016, 23(3): 538-543.
|
| [29] |
CUMMINS N, MATCHAM F, KLAPPER J, et al. Artificial intelligence to aid the detection of mood disorders[M]//BARH D. Artificial intelligence in precision health. Academic Press, NewYork: Academic Press, 2020: 231-255.
|
| [30] |
MILLAR L, MCCONNACHIE A, MINNIS H, et al. Phase 3 diagnostic evaluation of a smart tablet serious game to identify autism in 760 children 3-5 years old in Sweden and the United Kingdom[J]. BMJ Open, 2019, 9(7): e026226.
|
| [31] |
王丽梅, 李仲, 古天. 人工智能赋能心理健康教育的技术基础与应用图谱[J]. 中小学信息技术教育, 2025(7): 38-40.WANG L M, LI Z, GU T. Technical basis and application map of mental health education with artificial intelligence empowerment[J]. Inform Technol Educ Prim Sec Sch, 2025(7): 38-40. (in Chinese)
|
| [32] |
POSADA J D, BARDA A J, SHI L, et al. Predictive modeling for classification of positive valence system symptom severity from initial psychiatric evaluation records[J]. J Biomed Inform, 2017, 75S: S94-S104.
|
| [33] |
LEVKOVICH I, ELYOSEPH Z. Suicide risk assessments through the eyes of ChatGPT-3.5 versus ChatGPT-4: vignette study[J]. JMIR Ment Health, 2023, 10: e51232.
|
| [34] |
BAIN E E, SHAFNER L, WALLING D P, et al. Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia[J]. JMIR Mhealth Uhealth, 2017, 5(2): e18.
|
| [35] |
ATHREYA A P, VANDE VOORT J L, SHEKUNOV J, et al. Evidence for machine learning guided early prediction of acute outcomes in the treatment of depressed children and adolescents with antidepressants[J]. J Child Psychol Psychiatry, 2022, 63(11): 1347-1358.
|
| [36] |
VAIDYAM A N, WISNIEWSKI H, HALAMKA J D, et al. Chatbots and conversational agents in mental health: a review of the psychiatric landscape[J]. Can J Psychiatry, 2019, 64(7): 456-464.
|
| [37] |
ORSOLINI L, POMPILI S, SALVI V, et al. A systematic review on TeleMental health in youth mental health: focus on anxiety, depression and obsessive-compulsive disorder[J]. Medicina, 2021, 57(8): 793.
|
| [38] |
MORTIMER R, SOMERVILLE M P, MECHLER J, et al. Connecting over the Internet: establishing the therapeutic alliance in an Internet-based treatment for depressed adolescents[J]. Clin Child Psychol Psychiatry, 2022, 27(3): 549-568.
|
| [39] |
KHALAF A M, ALUBIED A A, KHALAF A M, et al. The impact of social media on the mental health of adolescents and young adults: a systematic review[J]. Cureus, 2023, 15(8): e42990.
|
| [40] |
LEHTIMAKI S, MARTIC J, WAHL B, et al. Evidence on digital mental health interventions for adolescents and young people: systematic overview[J]. JMIR Ment Health, 2021, 8(4): e25847.
|
| [41] |
OPEL D J, KIOUS B M, COHEN I G. AI as a mental health therapist for adolescents[J]. JAMA Pediatr, 2023, 177(12): 1253-1254.
|
| [42] |
DENECKE K, ABD-ALRAZAQ A, HOUSEH M. Artificial intelligence for chatbots in mental health: opportunities and challenges[M]//HOUSEH M, BORYCKI E, KUSHNIRUK A. Multiple perspectives on artificial intelligence in healthcare. Cham: Springer International Publishing, 2021: 115-128.
|
| [43] |
AHMED A, HASSAN A, AZIZ S, et al. Chatbot features for anxiety and depression: a scoping review[J]. Health Informatics J, 2023, 29(1): 14604582221146719.
|
| [44] |
ROMAEL HAQUE M D, RUBYA S. An overview of chatbot-based mobile mental health apps: insights from app description and user reviews[J]. JMIR Mhealth Uhealth, 2023, 11: e44838.
|
| [45] |
GOMES P V, SÁ V J, DONGA J, et al. The use of artificial intelligence in interactive virtual reality adaptive environments with real-time biofeedback applied to phobias psychotherapy[J]. Proceedings XoveTIC, 2023, 10: 275-279.
|
| [46] |
CHESHAM R K, MALOUFF J M, SCHUTTE N S. Meta-analysis of the efficacy of virtual reality exposure therapy for social anxiety[J]. Behav Change, 2018, 35(3): 152-166.
|
| [47] |
CHANG J C, LIN H Y, LV J, et al. Regional brain volume predicts response to methylphenidate treatment in individuals with ADHD[J]. BMC Psychiatry, 2021, 21(1): 26.
|
| [48] |
ACHARYA U R, OH S L, HAGIWARA Y, et al. Automated EEG-based screening of depression using deep convolutional neural network[J]. Comput Methods Programs Biomed, 2018, 161: 103-113.
|
| [49] |
ZOU L, ZHENG J, MIAO C, et al. 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI[J]. IEEE Access, 2017, 5: 23626-23636.
|
| [50] |
RIAD R, DENAIS M, DE GENNES M, et al. Automated speech analysis for risk detection of depression, anxiety, insomnia, and fatigue: algorithm development and validation study[J]. J Med Internet Res, 2024, 26: e58572.
|
| [51] |
THAKKAR A, GUPTA A, DE SOUSA A. Artificial intelligence in positive mental health: a narrative review[J]. Front Digit Health, 2024, 6: 1280235.
|
| [52] |
MINERVA F, GIUBILINI A. Is AI the future of mental healthcare?[J]. Topoi (Dordr), 2023, 42(3): 1-9.
|
| [53] |
梁朋, 郭玲, 李秋雨. 生成式人工智能视角下大学生心理健康教育研究[J]. 佛山科学技术学院学报(社会科学版), 2024, 42(4): 96-100.LIANG P, GUO L, LI Q Y. Research on mental health education for college students from the perspective of generative artificial intelligence[J]. J Foshan Univ Soc Sci Ed, 2024, 42(4): 96-100. (in Chinese)
|
| [54] |
MIOTTO R, WANG F, WANG S, et al. Deep learning for healthcare: review, opportunities and challenges[J]. Brief Bioinform, 2018, 19(6): 1236-1246.
|
| [55] |
INIESTA R, STAHL D, MCGUFFIN P. Machine learning, statistical learning and the future of biological research in psychiatry[J]. Psychol Med, 2016, 46(12): 2455-2465.
|
| [56] |
朱廷劭. 试析通用人工智能在心理学领域的应用[J]. 人民论坛·学术前沿, 2023(14): 86-91, 101.ZHU T S. An analysis of the application of AGI in the field of psychology[J]. Frontiers, 2023(14): 86-91, 101. (in Chinese)
|
| [57] |
DICUONZO G, DONOFRIO F, FUSCO A, et al. Healthcare system: moving forward with artificial intelligence[J]. Technovation, 2023, 120: 102510.
|