留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炎症因子与近视关联的研究进展

冯冕 许韶君 苏娱 陶芳标

冯冕, 许韶君, 苏娱, 陶芳标. 炎症因子与近视关联的研究进展[J]. 中国学校卫生, 2025, 46(10): 1503-1505. doi: 10.16835/j.cnki.1000-9817.2025306
引用本文: 冯冕, 许韶君, 苏娱, 陶芳标. 炎症因子与近视关联的研究进展[J]. 中国学校卫生, 2025, 46(10): 1503-1505. doi: 10.16835/j.cnki.1000-9817.2025306
FENG Mian, XU Shaojun, SU Yu, TAO Fangbiao. Research progress on the association between inflammatory factors and myopia[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2025, 46(10): 1503-1505. doi: 10.16835/j.cnki.1000-9817.2025306
Citation: FENG Mian, XU Shaojun, SU Yu, TAO Fangbiao. Research progress on the association between inflammatory factors and myopia[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2025, 46(10): 1503-1505. doi: 10.16835/j.cnki.1000-9817.2025306

炎症因子与近视关联的研究进展

doi: 10.16835/j.cnki.1000-9817.2025306
基金项目: 

安徽省转化医学研究院科研基金项目 2023zhyx-B13

环境与人口健康安徽省重点实验室开放课题 JKYS20234

详细信息
    作者简介:

    冯冕(2002-),女,安徽六安人,在读硕士,主要研究方向为儿童青少年近视防控

    通讯作者:

    许韶君,E-mail: xushaojun@ahmu.edu.cn

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R778.1+1 G479 R179

Research progress on the association between inflammatory factors and myopia

  • 摘要: 目前儿童青少年近视病因与发病机制尚未明确,炎症因子作为生物体内重要的调节介质,其在近视发生发展中的潜在作用引起越来越多的关注。研究对全身性炎症和眼内炎症状态与近视的关联进行阐述,探讨近视发病的炎症机制及靶向调控相关信号通路在近视治疗中的干预策略,为儿童青少年近视防控提供新思路。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • [1] HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042.
    [2] GRZYBOWSKI A, KANCLERZ P, TSUBOTA K, et al. A review on the epidemiology of myopia in school children worldwide[J]. BMC Ophthalmol, 2020, 20(1): 27.
    [3] WILLIAMS K M, HAMMOND C J. Perspectives on genetic and environmental factors in myopia, its prediction, and the future direction of research[J]. Invest Ophthalmol Vis Sci, 2025, 66(7): 4.
    [4] XU R, ZHENG J, LIU L, et al. Effects of inflammation on myopia: evidence and potential mechanisms[J]. Front Immunol, 2023, 14: 1260592.
    [5] LIN H J, WEI C C, CHANG C Y, et al. Role of chronic inflammation in myopia progression: clinical evidence and experimental validation[J]. EBioMedicine, 2016, 10: 269-281.
    [6] YUAN J, WU S, WANG Y, et al. Inflammatory cytokines in highly myopic eyes[J]. Sci Rep, 2019, 9(1): 3517.
    [7] XIN J, BAO B, LIU J, et al. Crosstalk between myopia and inflammation: a mini review[J]. Int J Med Sci, 2024, 21(9): 1589-1603.
    [8] HUANG Z, ZHOU J, LIU S, et al. The interplay between systemic inflammation and myopia: a bidirectional Mendelian randomization and experimental validation study[J]. Int Immunopharmacol, 2025, 157: 114803.
    [9] KANG Y T, ZHUANG Z H, HE X, et al. Mendelian randomization supports causal effects of inflammatory biomarkers on myopic refractive errors[J]. Eur J Ophthalmol, 2025, 35(2): 400-408.
    [10] LONG Q, YE J, LI Y, et al. C-reactive protein and complement components in patients with pathological myopia[J]. Optom Vis Sci, 2013, 90(5): 501-506.
    [11] HAN S B, JANG J, YANG H K, et al. Prevalence and risk factors of myopia in adult Korean population: Korea national health and nutrition examination survey 2013-2014 (KNHANES VI)[J]. PLoS One, 2019, 14(1): e0211204.
    [12] ICEL E, UCAK T, KARAKURT Y, et al. The relation of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio with high axial myopia[J]. Ocul Immunol Inflamm, 2020, 28(3): 396-401.
    [13] WANG X, HE Q, ZHAO X, et al. Assessment of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with high myopia[J]. BMC Ophthalmol, 2022, 22(1): 464.
    [14] YE S, HOU X, SONG K, et al. Association between dietary inflammatory index and adolescent myopia based on the National Health and Nutrition Examination Survey[J]. Sci Rep, 2024, 14(1): 28048.
    [15] YU Q, WANG C, LIU Z, et al. Association between inflammatory cytokines and oxidative stress levels in aqueous humor with axial length in human myopia[J]. Exp Eye Res, 2023, 237: 109670.
    [16] DE PIANO M, CACCIAMANI A, BALZAMINO B O, et al. Biomarker signature in aqueous humor mirrors lens epithelial cell activation: new biomolecular aspects from cataractogenic myopia[J]. Biomolecules, 2023, 13(9): 1328.
    [17] WEI Q, ZHUANG X, FAN J, et al. Proinflammatory and angiogenesis-related cytokines in vitreous samples of highly myopic patients[J]. Cytokine, 2021, 137: 155308.
    [18] NISHANTH S, BAUER N J C, SHETTY R, et al. A novel comparative study of inflammatory cytokines through noninvasive tear analysis in children with myopia versus emmetropia[J]. Am J Ophthalmol, 2025, 278: 413-420.
    [19] LIANG R, LI T, GAO H, et al. Causal relationships between inflammatory cytokines and myopia: an analysis of genetic and observational studies[J]. Ann Med Surg, 2024, 86(9): 5179-5190.
    [20] MCBRIEN N A. Regulation of scleral metabolism in myopia and the role of transforming growth factor-beta[J]. Exp Eye Res, 2013, 114: 128-140.
    [21] YU Q, ZHOU J B. Scleral remodeling in myopia development[J]. Int J Ophthalmol, 2022, 15(3): 510-514.
    [22] ZHAO F, ZHOU Q, REINACH P S, et al. Cause and effect relationship between changes in scleral matrix metallopeptidase-2 expression and myopia development in mice[J]. Am J Pathol, 2018, 188(8): 1754-1767.
    [23] IKEDA S I, KURIHARA T, TODA M, et al. Oral bovine milk lactoferrin administration suppressed myopia development through matrix metalloproteinase 2 in a mouse model[J]. Nutrients, 2020, 12(12). DOI: 10.3390/nu12123744.
    [24] LIU L, ZHOU W, FAN Y, et al. Effect of interleukin 6 on scleral fibroblast proliferation, differentiation, and apoptosis involved in myopic scleral remodeling[J]. Ophthalmic Res, 2022, 65(5): 529-539.
    [25] KU H, CHEN J J, HU M, et al. Myopia development in tree shrew is associated with chronic inflammatory reactions[J]. Curr Issues Mol Biol, 2022, 44(9): 4303-4313.
    [26] KU H, CHEN J J, CHEN W, et al. The role of transforming growth factor beta in myopia development[J]. Mol Immunol, 2024, 167: 34-42.
    [27] CHEN Z, XIAO K, LONG Q. Up-regulation of NLRP3 in the sclera correlates with myopia progression in a form-deprivation myopia mouse model[J]. Front Biosci, 2023, 28(2): 27.
    [28] XIAO K, CHEN Z, HE S, et al. Up-regulation of scleral C5b-9 and its regulation of the NLRP3 inflammasome in a form-deprivation myopia mouse model[J]. Immunobiology, 2024, 229(1): 152776.
    [29] CHOU Y L, HSU Y A, LIN C F, et al. Complement decay-accelerating factor inhibits inflammation-induced myopia development[J]. Mol Immunol, 2024, 171: 47-55.
    [30] CHEN C S, HSU Y A, LIN C H, et al. Fallopia Japonica and Prunella vulgaris inhibit myopia progression by suppressing AKT and NFκB mediated inflammatory reactions[J]. BMC Complement Med Ther, 2022, 22(1): 271.
    [31] HSU Y A, CHEN C S, WANG Y C, et al. Anti-inflammatory effects of resveratrol on human retinal pigment cells and a myopia animal model[J]. Curr Issues Mol Biol, 2021, 43(2): 716-727.
    [32] TIEN P T, LIN C H, CHEN C S, et al. Diacerein inhibits myopia progression through lowering inflammation in retinal pigment epithelial cell[J]. Mediators Inflamm, 2021, 2021: 6660640.
  • 加载中
计量
  • 文章访问数:  6
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-30
  • 修回日期:  2025-09-11
  • 刊出日期:  2025-10-25

目录

    /

    返回文章
    返回