留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重金属暴露与儿童青少年肥胖关联的系统评价与Meta分析

吴梦 罗律儿 王静涵 刘琴

吴梦, 罗律儿, 王静涵, 刘琴. 重金属暴露与儿童青少年肥胖关联的系统评价与Meta分析[J]. 中国学校卫生, 2025, 46(7): 926-931. doi: 10.16835/j.cnki.1000-9817.2025214
引用本文: 吴梦, 罗律儿, 王静涵, 刘琴. 重金属暴露与儿童青少年肥胖关联的系统评价与Meta分析[J]. 中国学校卫生, 2025, 46(7): 926-931. doi: 10.16835/j.cnki.1000-9817.2025214
WU Meng, LUO Lüer, WANG Jinghan, LIU Qin. Systematic review and Meta-analysis of the association between heavy metal exposure and obesity in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2025, 46(7): 926-931. doi: 10.16835/j.cnki.1000-9817.2025214
Citation: WU Meng, LUO Lüer, WANG Jinghan, LIU Qin. Systematic review and Meta-analysis of the association between heavy metal exposure and obesity in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2025, 46(7): 926-931. doi: 10.16835/j.cnki.1000-9817.2025214

重金属暴露与儿童青少年肥胖关联的系统评价与Meta分析

doi: 10.16835/j.cnki.1000-9817.2025214
基金项目: 

国家自然科学基金面上项目 81973067

重庆医科大学未来医学青年创新团队发展支持计划项目 W0054

详细信息
    作者简介:

    吴梦(2001-),女,河南许昌人,在读硕士,主要研究方向为儿童青少年健康

    通讯作者:

    刘琴,E-mail:liuqin@cqmu.edu.cn

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R179 R723.14 O614

Systematic review and Meta-analysis of the association between heavy metal exposure and obesity in children and adolescents

  • 摘要:   目的  系统评价铅、砷、镉、汞、铝5种重金属暴露与儿童青少年肥胖之间的关系,为后续开展相关研究提供科学依据。  方法  检索中国生物医学文献数据库、维普、中国知网、万方4个中文数据库和OVID、PubMed、Web of Science、EBSCO 4个外文数据库搜集相关研究,检索时间为建库至2024年5月5日。由2名研究者独立筛选文献、提取资料并评价纳入研究的偏倚风险后,对结果进行定量分析和定性归纳总结。  结果  共纳入5项有关铅暴露的队列研究、17项涉及铅(13项)、镉(8项)、汞(8项)、砷(4项)、铝(1项)暴露的横断面研究。2项队列研究的Meta分析结果显示铅暴露与儿童超重肥胖风险相关性无统计学意义(RR=0.76,95%CI=0.50~1.16,P>0.05);而横断面研究Meta分析结果显示铅暴露与儿童超重(OR=0.70,95%CI=0.59~0.84,2项研究)、肥胖(OR=0.71,95%CI=0.58~0.87,3项研究)风险均呈负相关,镉暴露与儿童超重(OR=0.83,95%CI=0.73~0.95,2项研究)、肥胖(OR=0.70,95%CI=0.63~0.78,3项研究)风险均呈负相关,汞暴露会增加儿童超重/肥胖(OR=1.42,95%CI=1.14~1.76,2项研究)、腹型肥胖(OR=1.99,95%CI=1.45~2.73,2项研究)的风险,尿液中砷质量体积浓度最高组与浓度最低组相比发生肥胖的风险更低(OR=0.39,95%CI=0.23~0.65,1项研究),尿液中铝质量体积浓度最高组与浓度最低组相比发生肥胖的风险更低(OR=0.52,95%CI=0.31~0.86,1项研究)(P值均<0.05)。  结论  重金属暴露可能是儿童青少年发生超重肥胖的风险因素,但结论尚不统一,还需进一步开展高质量前瞻性队列研究予以验证。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • 图  1  重金属暴露与儿童青少年肥胖关联的研究文献筛选流程

    Figure  1.  Flow chart of literature screening on the association between heavy metal exposure and obesity in children and adolescents

    图  2  儿童青少年铅暴露与肥胖风险的横断面研究Meta分析

    Figure  2.  Cross-sectional studies Meta-analysis for children and adolescents lead exposure and risk of obesity

    图  3  儿童青少年镉暴露与肥胖风险的横断面研究Meta分析

    Figure  3.  Cross-sectional studies Meta-analysis for children and adolescents cadmium exposure and risk of obesity

    图  4  儿童青少年汞暴露与超重肥胖风险的横断面研究Meta分析

    Figure  4.  Cross-sectional studies Meta-analysis for children and adolescents mercury exposure and risk of overweight/obesity

    图  5  儿童青少年汞暴露与腹型肥胖风险的横断面研究Meta分析

    Figure  5.  Cross-sectional studies Meta-analysis for children and adolescents mercury exposure and risk of abdominal obesity

    表  1  纳入的铅暴露与儿童青少年肥胖关联队列研究文献的基本特征

    Table  1.   Basic characteristics of cohort studies on the association of lead exposure and obesity in children and adolescents

    第一作者及年份 国家 样本来源 样本量(男/女) 基线年龄/岁 随访次数/随访间隔 生物样本 暴露水平 结局指标 肥胖指标测量年龄/岁
    Ahmadi(2022)[17] 贝宁 保健中心 659(333/326) 1.1 2/2年 血液 59.3 μg/La BMI Z 4(随访1),6(随访2)
    Cassidy-Bushrow(2016)[18] 美国 医院 299(159/140) 1.3 1/11个月 血液 2.45 μg/dL BMI Z分、超重、肥胖 2.2
    Deierlein(2019)[19] 美国 学校和医院 683(女) 7.8 7/1年 血液 1.16 μg/dL BMI、腰围、体脂百分比、超重、肥胖 7~14
    Kim(1995)[20] 美国 学校 58(27/31) 7.4 1/12年 牙本质 14.9 ppm BMI 20.5
    Liu(2019)[21] 墨西哥 医院 248(125/123) 1~4 1/— 血液 19.6 μg/dL BMI Z分、腰围、体脂百分比 8~16
    注:—表示未报告;a为几何平均数,其余均为算术平均数。
    下载: 导出CSV

    表  2  纳入的重金属暴露与儿童青少年肥胖关联横断面研究的基本特征

    Table  2.   Basic characteristics of cross-sectional studies on the association between heavy metal exposure and obesity in children and adolescents

    第一作者及年份 国家 样本来源 样本量 年龄/岁 生物样本 重金属种类及暴露水平 结局指标
    Zhou(2020)[22] 中国 医院 1 678 4.7 血液 铅:56.84 μg/La BMI Z
    Cho(2021)[23] 韩国 国民健康营养调查 1 327 10~18 血液 汞:2.16 μg/La BMI、腰高比、超重、腹型肥胖
    Shan(2022)[24] 美国 国家健康与营养检查调查 27 946 6~19 尿液 铅:38.46 μg/L;镉:7.6 μg/Lc 超重、肥胖
    Little(2009)[25] 美国 社区 360 2~12 血液 铅:1.8 μg/Lb BMI
    Donangelo(2021)[26] 乌拉圭 社区 259 6.7 血液 铅:4.2 μg/dLb 年龄别BMI Z
    Fábelová(2018)[27] 法国 无住房儿童和家庭 324 2.7 头发 铅:2.43 μg/g;镉:0.05 μg/g;汞:0.42 μg/g;砷:0.08 μg/gb BMI Z
    Gao(2018)[28] 中国 社区 14 202 0~6 血液 汞:1.39 μg/Lb BMI、BMI Z
    Kuang(2020)[29] 中国 学校 395 7~11 血液 铅:30.4 μg/Lb 标化BMI、腰围
    Kyoung-Bok(2008)[30] 韩国 社区 108 5~13 血液 铅:2.4 μg/dLb BMI
    张乔柔(2022)[31] 中国 山东莱州湾出生队列* 318 7.8 尿液 铅:1.13 μg/g;镉:0.41 μg/g;汞:2.66 μg/g;砷:80.01 μg/ga BMI、腰围、体脂率
    朱美琴(2021)[12] 中国 学校 1 471 2~6 尿液 铅:4.55 μg/g;镉:0.79 μg/g;砷:108.83μg/g;铝:127.21 μg/ga 肥胖
    Pastor(2021)[32] 美国 国家健康与营养检查调查 1 634 6~11 血液 铅:0.5 μg/dL;汞:0.3 μg/Lc BMI、腰围
    Shao(2017)[33] 美国 国家健康与营养检查调查 6 602 6~19 尿液 铅:0.90 ng/mL;镉:0.14 ng/mLb 超重、肥胖
    Shin(2024)[13] 韩国 国民健康营养调查 1 458 3~11 尿液 镉:0.11 μg/L;汞:0.47 μg/La BMI Z分、超重/肥胖
    Shin(2018)[34] 韩国 国民健康营养调查 1 567 10~19 血液 汞:1.93 μg/La 超重/肥胖、腹部肥胖
    García-Villarino(2022)[35] 西班牙 阿斯图里亚斯出生队列研究* 328 4~5 尿液 铅:1.9 μg/g;镉:0.3 μg/gc BMI、腰围
    Jillian(2019)[36] 加拿大 母婴环境化学品研究 449 2~5 血液 铅:0.66 μg/dL;镉:0.089 μg/L;汞:0.22 μg/L;砷:0.46 μg/Lc BMI Z
    注:*为队列研究中一次横断面调查;a为几何平均数;b为算术平均数;c为中位数。
    下载: 导出CSV
  • [1] 中华人民共和国国务院新闻办就《中国居民营养与慢性病状况报告(2020年)》有关情况举行发布会[EB/OL]. (2020-12-24)[2024-08-09]. http://www.gov.cn/xinwen/2020-12/24/content_5572983.htm.
    [2] REINEHR T. Long-term effects of adolescent obesity: time to act[J]. Nat Rev Endocrinol, 2018, 14(3): 183-188.
    [3] NICOLAIDIS S. Environment and obesity[J]. Metabolism, 2019, 100s: 153942.
    [4] SALCEDO-BELLIDO I, BUENO H C, OLMEDO P, et al. Metal (loid) exposure and overweight and obesity in 6-12-year-old Spanish children[J]. Expos Health, 2024, 16(6): 1471-1483.
    [5] NASAB H, RAJABI S, EGHBALIAN M, et al. Association of As, Pb, Cr, and Zn urinary heavy metals levels with predictive indicators of cardiovascular disease and obesity in children and adolescents[J]. Chemosphere, 2022, 294: 133664. http://www.sciencedirect.com/science/article/pii/S0045653522001576
    [6] YILMAZ B, TEREKECI H, SANDAL S, et al. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention[J]. Rev Endocr Metab Disord, 2020, 21(1): 127-147.
    [7] ZOELLER R T, BROWN T R, DOAN L L, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from the endocrine society[J]. Endocrinology, 2012, 153(9): 4097-4110.
    [8] BRAUN J M. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment[J]. Nat Rev Endocrinol, 2017, 13(3): 161-173.
    [9] WHO. 10 chemicals of public health concern[EB/OL]. (2020-06-01)[2024-08-07]. https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern.
    [10] 国家食品安全风险评估专家委员会. 中国居民膳食铝暴露的风险评估[R]. 北京: 国家食品安全风险评估中心, 2012: 3-5.

    China National Expert Committee of Food Safety Risk Assessment. Risk assessment of dietary exposure to aluminum in Chinese population[R]. Beijing: China National Center for Food Safety Risk Assessment, 2012: 3-5. (in Chinese)
    [11] SHAO W, LIU Q, HE X, et al. Association between level of urinary trace heavy metals and obesity among children aged 6-19 years: NHANES 1999-2011[J]. Environ Sci Pollut Res Int, 2017, 24(12): 11573-11581.
    [12] 朱美琴, 纪宏先, 余丽丽, 等. 湖北省十堰市城区学龄前儿童尿金属水平与肥胖的关系[J]. 环境与职业医学, 2021, 38(9): 986-993.

    ZHU M Q, JI H X, YU L L, et al. Association of urinary metals levels with obesity in urban preschoolers in Shiyan of Hubei Province[J]. J Environ Occup Med, 2021, 38(9): 986-993. (in Chinese)
    [13] SHIN M W, KIM H B, KWON A, et al. Associations between urinary mercury/cadmium concentrations and anthropometric features in Korean children[J]. Toxics, 2024, 12(3): 175.
    [14] STANG A. Critical evaluation of the Newcastle-Ottawa Scale for the assessment of the quality of nonrandomized studies in Meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605.
    [15] FAHMY O, FAHMY U A, ALHAKAMY N A, et al. Single-port versus multiple-port robot-assisted radical prostatectomy: a systematic review and Meta-analysis[J]. J Clin Med, 2021, 10(24): 5723.
    [16] 曾宪涛, 刘慧, 陈曦, 等. Meta分析系列之四: 观察性研究的质量评价工具[J]. 中国循证心血管医学杂志, 2012, 4(4): 297-299.

    ZENG X T, LIU H, CHEN X, et al. Meta-analysis series Ⅳ: a quality assessment tool for observational studies[J]. Chin J Evid Based Cardiovasc Med, 2012, 4(4): 297-299. (in Chinese)
    [17] AHMADI S, BOTTON J, ZOUMENOU R, et al. Lead exposure in infancy and subsequent growth in Beninese children[J]. Toxics, 2022, 10(10): 595.
    [18] CASSIDY-BUSHROW A E, HAVSTAD S, BASU N, et al. Detectable blood lead level and body size in early childhood[J]. Biol Trace Elem Res, 2016, 171(1): 41-47.
    [19] DEIERLEIN A L, TEITELBAUM S L, WINDHAM G C, et al. Lead exposure during childhood and subsequent anthropometry through adolescence in girls[J]. Environ Int, 2019, 122: 310-315.
    [20] KIM R, HU H, ROTNITZKY A, et al. A longitudinal study of chronic lead exposure and physical growth in Boston children[J]. Environ Health Perspect, 1995, 103(10): 952-957.
    [21] LIU Y, PETERSON K E, MONTGOMERY K, et al. Early lead exposure and childhood adiposity in Mexico City[J]. Int J Hyg Environ Health, 2019, 222(6): 965-970.
    [22] ZHOU C C, HE Y Q, GAO Z Y, et al. Sex differences in the effects of lead exposure on growth and development in young children[J]. Chemosphere, 2020, 250: 126294.
    [23] CHO K Y. Association of blood mercury levels with the risks of overweight and high waist-to-height ratio in children and adolescents: data from the Korean national health and nutrition examination survey[J]. Children (Basel), 2021, 8(12): 1087.
    [24] SHAN Q. Trend analysis of the association of urinary metals and obesity in children and adolescents[J]. Chemosphere, 2022, 307(Pt 1): 135617.
    [25] LITTLE B B, SPALDING S, WALSH B, et al. Blood lead levels and growth status among African-American and Hispanic children in Dallas, Texas-1980 and 2002: Dallas Lead Project Ⅱ[J]. Ann Hum Biol, 2009, 36(3): 331-341.
    [26] DONANGELO C M, KERR B T, QUEIROLO E I, et al. Lead exposure and indices of height and weight in Uruguayan urban school children, considering co-exposure to cadmium and arsenic, sex, iron status and dairy intake[J]. Environ Res, 2021, 195: 110799.
    [27] FÁBELOVÁ L, VANDENTORREN S, VUILLERMOZ C, et al. Hair concentration of trace elements and growth in homeless children aged < 6 years: results from the ENFAMS study[J]. Environ Int, 2018, 114: 318-325.
    [28] GAO Z Y, LI M M, WANG J, et al. Blood mercury concentration, fish consumption and anthropometry in Chinese children: a national study[J]. Environ Int, 2018, 110: 14-21.
    [29] KUANG W, CHEN Z, SHI K, et al. Adverse health effects of lead exposure on physical growth, erythrocyte parameters and school performances for school-aged children in eastern China[J]. Environ Int, 2020, 145: 106130.
    [30] KYOUNG-BOK M. Relationship between low blood lead levels and growth in children of white-collar civil servants in Korea[J]. Int J Hygiene Environ Health, 2008, 211(1/2): 82-87.
    [31] 张乔柔, 曹云, 田英, 等. 学龄期儿童重金属暴露水平与其体格发育相关指标的关联性研究[J]. 环境与职业医学, 2022, 39(2): 127-132, 140.

    ZHANG Q R, CAO Y, TIAN Y, et al. Correlation between heavy metal exposure levels in school-age children and their physical development-related indicators[J]. J Environ Occup Med, 2022, 39(2): 127-132, 140. (in Chinese)
    [32] PASTOR A J S, DESAI G, GARCÍA-VILLARINO M, et al. Exposure to a mixture of metals and growth indicators in 6-11-year-old children from the 2013-2016 NHANES[J]. Expos Health, 2021, 13(2): 173-184.
    [33] SHAO W, LIU Q, HE X, et al. Association between level of urinary trace heavy metals and obesity among children aged 6-19 years: NHANES 1999-2011. Environmental science and pollution research international[M]. Germany: Springer, 2017: 11573-11581.
    [34] SHIN Y Y, RYU I K, PARK M J, et al. The association of total blood mercury levels and overweight among Korean adolescents: analysis of the Korean National Health and Nutrition Examination Survey (KNHANES) 2010-2013[J]. Korean J Pediatr, 2018, 61(4): 121-128.
    [35] GARCÍA-VILLARINO M, SIGNES-PASTOR A J, KARAGAS M R, et al. Exposure to metal mixture and growth indicators at 4-5 years. A study in the INMA-Asturias Cohort[J]. Environ Res, 2022, 204(Pt D): 112375.
    [36] JILLIAN A M. Blood metal levels and early childhood anthropometric measures in a cohort of Canadian children[J]. Environ Res, 2019, 179(Pt A): 108736.
    [37] MOON M K, LEE I, LEE A, et al. Lead, mercury, and cadmium exposures are associated with obesity but not with diabetes mellitus: Korean National Environmental Health Survey (KoNEHS) 2015-2017[J]. Environ Res, 2022, 204(Pt A): 111888.
    [38] IAVICOLI I, FONTANA L, BERGAMASCHI A. The effects of metals as endocrine disruptors[J]. J Toxicol Environ Health B Crit Rev, 2009, 12(3): 206-223.
    [39] FARKHONDEH T, SAMARGHANDIAN S, AZIMI-NEZHAD M. The role of arsenic in obesity and diabetes[J]. J Cell Physiol, 2019, 234(8): 12516-12529.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-20
  • 修回日期:  2025-05-06
  • 网络出版日期:  2025-08-02
  • 刊出日期:  2025-07-25

目录

    /

    返回文章
    返回