留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脑性瘫痪伴生长发育迟缓儿童胰岛素样生长因子1表达和肠道菌群特征及相关性

黄敏 余小塘 周平 卢振盛 朱世华 聂韵 梁正中 伍利群 杨杰文

黄敏, 余小塘, 周平, 卢振盛, 朱世华, 聂韵, 梁正中, 伍利群, 杨杰文. 脑性瘫痪伴生长发育迟缓儿童胰岛素样生长因子1表达和肠道菌群特征及相关性[J]. 中国学校卫生, 2024, 45(9): 1246-1250. doi: 10.16835/j.cnki.1000-9817.2024290
引用本文: 黄敏, 余小塘, 周平, 卢振盛, 朱世华, 聂韵, 梁正中, 伍利群, 杨杰文. 脑性瘫痪伴生长发育迟缓儿童胰岛素样生长因子1表达和肠道菌群特征及相关性[J]. 中国学校卫生, 2024, 45(9): 1246-1250. doi: 10.16835/j.cnki.1000-9817.2024290
HUANG Min, YU Xiaotang, ZHOU Ping, LU Zhensheng, ZHU Shihua, NIE Yun, LIANG Zhengzhong, WU Liqun, YANG Jiewen. Correlation between serum insulin-like growth factor-1 expression and characteristics of gut microbiota in children with cerebral palsy accompanied by growth retardation[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(9): 1246-1250. doi: 10.16835/j.cnki.1000-9817.2024290
Citation: HUANG Min, YU Xiaotang, ZHOU Ping, LU Zhensheng, ZHU Shihua, NIE Yun, LIANG Zhengzhong, WU Liqun, YANG Jiewen. Correlation between serum insulin-like growth factor-1 expression and characteristics of gut microbiota in children with cerebral palsy accompanied by growth retardation[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(9): 1246-1250. doi: 10.16835/j.cnki.1000-9817.2024290

脑性瘫痪伴生长发育迟缓儿童胰岛素样生长因子1表达和肠道菌群特征及相关性

doi: 10.16835/j.cnki.1000-9817.2024290
基金项目: 

广东省医学科学技术研究基金项目 B2022234

广州市"岭南英杰工程"第二梯队后备人才项目 穗人社函[2019]928号

2022年度广州市民政科技基金课题揭榜挂帅技术攻关项目 2022MZK02

详细信息
    作者简介:

    黄敏(1988-),女,广东茂名人,硕士,主治医师,主要研究方向为儿童神经与生长发育

    余小塘(1966-),男,江西广丰人,大学本科,主任医师,主要研究方向为内科心脑血管病诊治及特殊儿童生长发育评估

    通讯作者:

    杨杰文, E-mail: 360449586@qq.com

  • 利益冲突声明   所有作者声明无利益冲突。
  • 黄敏与余小塘为共同第一作者
  • 中图分类号: R651.1+5 R748 R378.2 R339.3+5

Correlation between serum insulin-like growth factor-1 expression and characteristics of gut microbiota in children with cerebral palsy accompanied by growth retardation

  • 摘要:   目的  探讨脑性瘫痪(简称“脑瘫”)伴生长发育迟缓儿童血清胰岛素样生长因子1(IGF-1)表达、肠道菌群特征及相关性,为促进脑瘫伴生长发育迟缓儿童身心健康提供参考依据。  方法  2022年6月—2023年6月随机选取广州市某福利院的3~14岁112名脑瘫儿童,按照WHO标准是否生长发育迟缓分为脑瘫伴生长发育迟缓组(80名)和脑瘫伴生长发育正常组(32名),并选取同院生活的健康儿童32名为对照组;对3组儿童进行血清IGF-1测定,并用16S rDNA测序技术测定肠道菌群,探究3组儿童IGF-1表达特点、肠道菌群群落组成和差异特征及相关性。  结果  对3组儿童血清IGF-1水平进行比较,脑瘫伴生长发育迟缓组[97.70(66.35,139.50)ng/mL]、脑瘫伴生长发育正常组[149.00(68.30,233.00)ng/mL]均低于健康对照组[169.90(118.75,293.80)ng/mL],差异有统计学意义(H=20.13,P < 0.05)。脑瘫伴生长发育迟缓组和脑瘫伴生长发育正常组肠道菌群Alpha多样性均高于健康对照组[Chao指数(482.50,489.90,396.10)、Shannon指数(6.29,6.44,5.89)和Simpson指数(0.97,0.97,0.96)](H值分别为17.20,7.01,6.41,P值均 < 0.05)。IGF-1与Eubacterium coprostanoligenes group、罕见小球菌属相对丰度均呈正相关(r值分别为0.38,0.33,P值均<0.05)。  结论  脑瘫伴生长发育迟缓儿童血清IGF-1水平低下,同时肠道菌群群落多样、菌种差异。选择适合的肠道菌群作为脑瘫伴生长发育迟缓的潜在预测标志物,可为开展干预治疗提供新策略。
    1)  利益冲突声明   所有作者声明无利益冲突。
    2)  黄敏与余小塘为共同第一作者
  • 图  1  3组儿童肠道菌群的主成分分析

    注:横、纵坐标标识两个选定的主坐标成分,百分比表示主坐标成分对样本组成差异的贡献值,两样本点越接近表明物种组成越相似。

    Figure  1.  Principal co-ordinate analysis of gut microbiota among three groups of children

    图  2  3组儿童肠道菌群的非度量多维尺度分析

    注:横、纵坐标标识两个选定的主坐标成分,百分比表示主坐标成分对样本组成差异的贡献值,两样本点越接近表明物种组成越相似。

    Figure  2.  Nonmetric multidimensional scaling of gut microbiota among three groups of children

    表  1  3组儿童身体形态及血清IGF-1水平比较[M(P25P75)]

    Table  1.   Comparison of body morphology and IGF-1 levels among the three children groups[M(P25, P75)]

    组别 人数 身高/cm BMI/(kg·m-2) HAZ IGF-1/(ng·mL-1)
    脑瘫伴生长发育迟缓组 80 112.00(105.00,127.50)ab 13.95(12.08,15.88)b -3.25(-3.82,-2.61)ab 97.70(66.35,139.50)ab
    脑瘫伴生长发育正常组 32 125.00(115.00,143.00) 13.30(11.00,15.60)b -1.30(-1.77,-0.58) 149.00(68.30,233.00)b
    健康对照组 32 137.50(105.75,147.00) 16.35(14.50,18.15) -0.47(-1.08,0.23) 169.90(118.75,293.80)
    H 22.17 20.91 107.65 20.13
    P <0.01 <0.01 <0.01 <0.01
    注:a与脑瘫伴生长发育正常组比较,P<0.05;b与健康对照组比较,P<0.05。
    下载: 导出CSV

    表  2  3组儿童肠道菌群的线性判别分析

    Table  2.   LEfSe analysis of gut murobita among three groups

    组别 微生物类群 LDA分值
    脑瘫伴生长发育迟缓组 双岐菌属 4.30
    (n=80) 栖粪杆菌属 4.13
    Eubacterium coprostanoligenes group 3.89
    Christensenellaceae R7 group 3.64
    另支菌属 3.37
    脑瘫伴生长发育正常组 Clostridia vadinBB60 group 4.05
    (n=32) UCG 002 4.03
    弯曲菌属 3.99
    副拟杆菌属 3.98
    Rikenellaceae RC9 gut group 3.92
    健康对照组 Escherichia Shigella 4.42
    (n=32) 戴阿利斯特杆菌属 3.99
    扭链胃球菌属 3.89
    罕见小球菌属 3.88
    罗姆布茨菌属 3.87
    下载: 导出CSV

    表  3  3组儿童肠道差异菌群水平与体格发育指标、IGF-1的相关性分析(r值,n=144)

    Table  3.   3 Correlation analysis among physical development index, IGF-1 and differential gut murobita levels in children with three groups(r, n=144)

    微生物类群 IGF-1 HAZ 体重 BMI 身高
    双岐菌属 -0.14 -0.31 -0.37 -0.21 -0.33**
    栖粪杆菌属 0.07 0.10 0.19 -0.15 0.35**
    Eubacterium coprostanoligenes group 0.38** 0.21 0.30** -0.02 0.37**
    Christensenellaceae R7 group 0.07 0.05 0.11 -0.17 0.24*
    另支菌属 0.08 -0.07 0.02 -0.07 0.05
    Clostridia vadinBB60 group 0.09 0.00 0.23* 0.16 0.14
    UCG 002 -0.08 0.06 0.12 -0.02 0.14
    弯曲菌属 0.09 -0.11 -0.07 -0.04 -0.08
    副拟杆菌属 0.15 0.23** 0.13 -0.33** 0.38**
    Rikenellaceae RC9 gut group -0.13 0.04 0.21 -0.02 0.25*
    Escherichia Shigella -0.05 0.08 -0.07 0.01 -0.10
    戴阿利斯特杆菌属 -0.06 0.04 -0.08 0.02 -0.11
    扭链胃球菌属 -0.14 0.16 0.02 -0.24* 0.26**
    罕见小球菌属 0.33** 0.30** 0.34** 0.17 0.29**
    罗姆布茨菌属 -0.06 -0.01 -0.09 -0.22* 0.07
    IGF-1 1.00 0.45** 0.58** 0.11 0.55**
    注: * P<0.05,** P<0.01。
    下载: 导出CSV
  • [1] PATEL D R, NEELAKANTAN M, PANDHER K, et al. Cerebral palsy in children: a clinical overview[J]. Transl Pediatr, 2020, 9(Suppl 1): S125-S135.
    [2] YAKUT A, DINLEYICI E C, IDEM S, et al. Serum leptin levels in children with cerebral palsy: relationship with growth and nutritional status[J]. Neur Endocrinol Lett, 2006, 27(4): 507-512.
    [3] HEGAZI M A, SOLIMAN O E, HASANEEN B M, et al. Growth hormone/insulin-like growth factor-1 axis: a possible non-nutritional factor for growth retardation in children with cerebral palsy[J]. J Pediatr, 2012, 88(3): 267-274. doi: 10.2223/JPED.2197
    [4] THURSBY E, JUGE N. Introduction to the human gut microbiota[J]. Biochem J, 2017, 474(11): 1823-1836. doi: 10.1042/BCJ20160510
    [5] FLINT H J, SCOTT K P, LOUIS P, et al. The role of the gut microbiota in nutrition and health[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(10): 577-589. doi: 10.1038/nrgastro.2012.156
    [6] OSADCHIY V, MARTIN C R, MAYER E A. The gut-brain axis and the microbiome: mechanisms and clinical implications[J]. Clin Gastroenterol Hepatol, 2019, 17(2): 322-332. doi: 10.1016/j.cgh.2018.10.002
    [7] QI M, TAN B, WANG J, et al. The microbiota-gut-brain axis: a novel nutritional therapeutic target for growth retardation[J]. Crit Rev Food Sci Nutr, 2022, 62(18): 4867-4892. doi: 10.1080/10408398.2021.1879004
    [8] SUBRAMANIAN S, HUQ S, YATSUNENKO T, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children[J]. Nature, 2014, 510(7505): 417-421. doi: 10.1038/nature13421
    [9] VONAESCH P, MORIEN E, ANDRIANONIMIADANA L, et al. Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa[J]. Proc Natl Acad Sci, 2018, 115(36): E8489-E8498.
    [10] 中国康复医学会儿童康复专业委员会, 中国残疾人康复协会小儿脑性瘫痪康复专业委员会, 中国医师协会康复医师分会儿童康复专业委员会, 等. 中国脑性瘫痪康复指南(2022)第一章: 概论[J]. 中华实用儿科临床杂志, 2022, 37(12): 887-892.

    Chinese Association of Rehabilitation Medicine Pediatric Rehabilitation Committee, Chinese Association of Rehabilitation of Disabled Persons Rehabilitation Committee for Pedirtiric Cerebral Palsy, Chinese Medical Doctor Association Pediatric Rehabilitation Committee, et al. Chinese rehabilitation guidelines for cerebral palsy(2022)part 1: overview[J]. J Appl Clin Pediatr, 2022, 37(12): 887-892. (in Chinese)
    [11] WHO. WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development[EB/OL]. (2012-06-16)[2023-12-28]. https://apps.who.int/iris/handle/10665/43413 (2006).
    [12] 高超, 艾克拜尔·哈里克, 曹胜操, 等. 应用CPVS术治疗的痉挛型脑瘫患儿血清IGF-1水平的变化及其与体格发育指标的关系研究[J]. 临床神经外科杂志, 2023, 20(3): 323-326, 331.

    GAO C, AIKEBAIER H, CAO S C, et al. Study on changes of serum IGF-1 levels and their relationship with physical development indicators in children with spastic cerebral palsy treated with CPVS surgery[J]. J Clin Neurosurg, 2023, 20(3): 323-326, 331. (in Chinese)
    [13] 陈艳艳, 陈奕江, 梁彬. 脑瘫患儿血清瘦素、IGF-1水平变化与DQ、GMFM-88量表评分的关系[J]. 标记免疫分析与临床, 2022, 29(3): 392-396.

    GHEN Y Y, CHEN Y J, LIANG B, et al. The correlation of serum leptin and IGF-1 levels and DQ, GMFM-88 scores in children with cerebral palsy[J]. Label Immun Clin Med, 2022, 29(3): 392-396. (in Chinese)
    [14] 周波兰, 黄从付, 彭远平, 等. 高通量测序探讨脑瘫儿童肠道菌群的变化[J]. 中国儿童保健杂志, 2020, 28(10): 1077-1082.

    ZHOU B L, HUANG C F, PENG Y P, et al. Investigation on the changes of intestinal flora in children with cerebral palsy using high-throughput sequencing[J]. Chin J Child Health Care, 2020, 28(10): 1077-1082. (in Chinese)
    [15] SHIN S C, KIM S H, YOU H, et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling[J]. Science, 2011, 334(6056): 670-674. doi: 10.1126/science.1212782
    [16] JENSEN E A, YOUNG J A, MATHES S C, et al. Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: a new frontier for microbial endocrinology[J]. Growth Horm IGF Res, 2020, 53: 101333.
    [17] LAYDEN B T, ANGUEIRA A R, BRODSKY M, et al. Short chain fatty acids and their receptors: new metabolic targets[J]. Transl Res, 2013, 161(3): 131-140. doi: 10.1016/j.trsl.2012.10.007
    [18] SCHWARZER M, STRIGINI M, LEULIER F. Gut microbiota and host juvenile growth[J]. Calcif Tissue Int, 2018, 102(4): 387-405. doi: 10.1007/s00223-017-0368-y
    [19] SAHANDI J, JAFARYAN H, SOLTANI M, et al. The use of two Bifidobacterium strains enhanced growth performance and nutrient utilization of rainbow trout (oncorhynchus mykiss) fry[J]. Probiotics Antimicrob Proteins, 2019, 11(3): 966-972. doi: 10.1007/s12602-018-9455-2
    [20] MIQUEL S, MARTIN R, ROSSI O, et al. Faecalibacterium praus-nitzii and human intestinal health[J]. Curr Opin Microbiol, 2013, 16(3): 255-261. doi: 10.1016/j.mib.2013.06.003
    [21] MUKHERJEE A, LORDAN C, ROSS R P, et al. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health[J]. Gut Microbes, 2020, 12(1): 1802866. doi: 10.1080/19490976.2020.1802866
    [22] VRIEZE A, VAN NOOD E, HOLLEMAN F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome[J]. Gastroenterology, 2012, 143(4): 913-916. doi: 10.1053/j.gastro.2012.06.031
    [23] LOUIS S, TAPPU R M, DAMMS-MACHADO A, et al. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing[J]. PLoS One, 2016, 11(2): e0149564. doi: 10.1371/journal.pone.0149564
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  40
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-20
  • 修回日期:  2024-08-04
  • 网络出版日期:  2024-10-08
  • 刊出日期:  2024-09-25

目录

    /

    返回文章
    返回