留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物节律紊乱与青少年心血管代谢风险关联及其机制的研究进展

韩菲菲 谢阳 陶芳标

韩菲菲, 谢阳, 陶芳标. 生物节律紊乱与青少年心血管代谢风险关联及其机制的研究进展[J]. 中国学校卫生, 2024, 45(4): 599-603. doi: 10.16835/j.cnki.1000-9817.2024130
引用本文: 韩菲菲, 谢阳, 陶芳标. 生物节律紊乱与青少年心血管代谢风险关联及其机制的研究进展[J]. 中国学校卫生, 2024, 45(4): 599-603. doi: 10.16835/j.cnki.1000-9817.2024130
HAN Feifei, XIE Yang, TAO Fangbiao. Research progress on the association between biorhythm disorders and cardiovascular metabolic risk in adolescents and possible mechanisms[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(4): 599-603. doi: 10.16835/j.cnki.1000-9817.2024130
Citation: HAN Feifei, XIE Yang, TAO Fangbiao. Research progress on the association between biorhythm disorders and cardiovascular metabolic risk in adolescents and possible mechanisms[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(4): 599-603. doi: 10.16835/j.cnki.1000-9817.2024130

生物节律紊乱与青少年心血管代谢风险关联及其机制的研究进展

doi: 10.16835/j.cnki.1000-9817.2024130
基金项目: 

国家自然科学基金重点项目 82073578

详细信息
    作者简介:

    韩菲菲(1998-),女,安徽合肥人,在读硕士,主要研究方向为环境暴露与母婴健康

    通讯作者:

    陶芳标,E-mail: fbtao@ahmu.edu.cn

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R179  R714.252  R825.6  G479

Research progress on the association between biorhythm disorders and cardiovascular metabolic risk in adolescents and possible mechanisms

  • 摘要: 青少年处于由儿童向成人角色转变的重要过渡时期,该时期青少年的行为习惯和生理周期变化显著,生物节律易出现紊乱;同时由于青少年时期超重和肥胖率增加,心血管代谢风险显著上升。研究就生物节律紊乱、青少年心血管代谢健康的流行现状和关联以及潜在的表观遗传调控机制进行综述,为调控生物节律促进青少年心血管代谢健康提供理论依据。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • 表  1  不同生物节律紊乱表型与心血管代谢风险关联的相关研究

    Table  1.   Correlation studies on the association between different phenotypes of circadian rhythm disorders and cardiovascular metabolic risk

    第一作者 年份 国家 研究方法 生物节律紊乱表型 主要发现
    Lo[5] 2019 中国 临床试验 睡眠-觉醒周期不规律 上学日和周末就寝时间相差>2 h与超重肥胖风险增加相关
    Morales-Ghinaglia[6] 2023 美国 队列研究 睡眠-觉醒周期不规律 上学日与周末睡眠-觉醒周期失调可能会导致向心性肥胖和血压升高
    Chang[14] 2021 韩国 临床试验 周末入睡时间延迟 周末入睡时间延迟与青少年舒张压升高显著相关
    Dos Santos[17] 2020 巴西 临床试验 睡眠时长不足 睡眠时长增加与男生收缩压降低和女生的收缩压升高有关
    Widjaja[18] 2023 印度 临床试验 睡眠时长不足 睡眠时长与空腹胰岛素水平和HOMA-IR值呈负相关
    Zakrzewski-Fruer[7] 2023 英国 临床试验 不吃早餐 不吃早餐对青春期女生的心脏代谢风险标志物产生不利影响
    Liang[22] 2024 中国 临床试验 饮食和睡眠节律紊乱 儿童饮食和睡眠节律紊乱可能与血压水平升高有关
    Yang[27] 2016 美国 实验研究 生物钟基因bmal1缺失 敲除核心生物钟基因bmal1后,小鼠心率和血压的正常昼夜节律均完全消失
    Harfmann[28] 2016 美国 实验研究 生物钟基因bmal1缺失 小鼠骨骼肌中生物钟基因bmal1的缺失导致糖代谢紊乱
    Lin[31] 2022 中国 临床试验 MEL分泌紊乱 暴露于较高ALAN水平下的儿童青少年超重肥胖等心血管代谢风险因素增加40%
    Overberg[32] 2022 德国 临床试验 MEL分泌紊乱 具有胰岛素抵抗的肥胖青少年夜间MEL水平显著降低
    Agil[34] 2011 西班牙 实验研究 MEL分泌减少 MEL可以改变年轻雄性肥胖2型糖尿病大鼠的体重和血脂水平
    Bouzas[35] 2014 巴西 临床试验 月经周期紊乱 月经周期不规律的青春期女生腰围、口服葡萄糖后2 h血糖、空腹和2 h胰岛素、HOMA-IR和TG显著增加
    Glueck[37] 2015 美国 临床试验 月经周期延迟 青春期月经延迟模式是年轻成人血糖受损、2型糖尿病、代谢综合征和多囊卵巢综合征发生和发展的重要危险因素
    下载: 导出CSV
  • [1] 健康中国促进委员会. 关于印发《健康中国行动2022工作要点》的通知[EB/OL]. (2019-07-29)[2023-01-28]. http://www.gov.cn/xinwen/2019-07/15/content_5409694.htm.

    Healthy China Promotion Committee. Notice on issuing the Work Points of Healthy China Action 2022[EB/OL]. (2019-07-29)[2023-01-28]. http://www.gov.cn/xinwen/2019-07/15/content_5409694.htm. (in Chinese)
    [2] ANDERSSON C, VASAN R S. Epidemiology of cardiovascular disease in young individuals[J]. Nat Rev Cardiol, 2018, 15(4): 230-240. doi: 10.1038/nrcardio.2017.154
    [3] ECKEL R H, KAHN R, ROBERTSON R M, et al. Preventing cardiovascular disease and diabetes: a call to action from the American Diabetes Association and the American Heart Association[J]. Circulation, 2006, 113(25): 2943-2946. doi: 10.1161/CIRCULATIONAHA.106.176583
    [4] 马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2022》要点解读[J]. 中国全科医学, 2023, 26 (32): 3975-3994. https://www.cnki.com.cn/Article/CJFDTOTAL-QKYX202332001.htm

    MA L Y, WANG Z W, FAN J, et al. Interpretation of Report on Cardiovascular Health and Diseases in China 2022[J]. Chin Gen Pract, 2023, 26 (32): 3975-3994. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QKYX202332001.htm
    [5] LO K, KEUNG V, CHEUNG C, et al. Associations between sleep pattern and quality and cardiovascular risk factors among Macao school students[J]. Child Obes, 2019, 15(6): 387-396. doi: 10.1089/chi.2018.0319
    [6] MORALES-GHINAGLIA N, LARSEN M, HE F, et al. Circadian misalignment impacts the association of visceral adiposity with elevated blood pressure in adolescents[J]. Hypertension, 2023, 80(4): 861-871. doi: 10.1161/HYPERTENSIONAHA.122.20398
    [7] ZAKRZEWSKI-FRUER J K, MORARI V, CHAMPION R B, et al. Acute cardiometabolic and exercise responses to breakfast omission versus breakfast consumption in adolescent girls: a randomised crossover trial[J]. Nutrients, 2023, 15(14): 3210. doi: 10.3390/nu15143210
    [8] NOUBIAP J J, NANSSEU J R, LONTCHI-YIMAGOU E, et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: a systematic review and modelling analysis[J]. Lancet Child Adolesc Health, 2022, 6(3): 158-170. doi: 10.1016/S2352-4642(21)00374-6
    [9] MA H, LIU F C, YANG X L, et al. Association of short-term fine particulate matter exposure with pulmonary function in populations at intermediate to high-risk of cardiovascular disease: a panel study in three Chinese cities[J]. Ecotoxicol Environ Saf, 2021, 220: 112397. doi: 10.1016/j.ecoenv.2021.112397
    [10] DING W Q, CHENG H, YAN Y K, et al. 10-year trends in serum lipid levels and dyslipidemia among children and adolescents from several schools in Beijing, China[J]. J Epidemiol, 2016, 26(12): 637-645. doi: 10.2188/jea.JE20140252
    [11] 胡霄, 姜红如, 张兵, 等. 中国十五省7~17岁儿童青少年心血管代谢性危险因素的流行特征[J]. 环境与职业医学, 2021, 38 (8): 833-838. https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX202108008.htm

    HU X, JIANG H R, ZHANG B, et al. Epidemiological characteristics of cardio-metabolic risk factors among children and adolescents aged 7-17 years in 15 provinces of China[J]. J Environ Occup Med, 2021, 38(8): 833-838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX202108008.htm
    [12] RGENOVESI S, GIUSSANI M, ORLANDO A, et al. Prevention of cardiovascular diseases in children and adolescents[J]. High Blood Press Cardiovasc Prev, 2019, 26(3): 191-197. doi: 10.1007/s40292-019-00316-6
    [13] ROENNEBERG T, MERROW M. The circadian clock and human health[J]. Curr Biol, 2016, 26(10): 432-443. doi: 10.1016/j.cub.2016.04.011
    [14] CHANG S W, KANG J W. Association between sleep time and blood pressure in Korean adolescents: cross-sectional analysis of KNHANES Ⅶ[J]. Children (Basel), 2021, 8(12): 1202.
    [15] LORENZO T, MARCO F, VINCENZO N. Sex difference in sleep-time preference and sleep need: a cross-sectional survey among Italian pre-adolescents, adolescents, and adults[J]. Chronobiol Int, 2008, 25(5): 745-759. doi: 10.1080/07420520802394191
    [16] SKRLEC I, MILIC J, STEINER R. The impact of the circadian genes CLOCK and ARNTL on myocardial infarction[J]. J Clin Med, 2020, 9(2): 484. doi: 10.3390/jcm9020484
    [17] DOS SANTOS E S G, DE SOUZA O F. Association of sleep duration and blood pressure in adolescents: a multicenter study[J]. Am J Hypertens, 2020, 33(1): 77-83. doi: 10.1093/ajh/hpz129
    [18] WIDJAJA N A, KURUBE C F, ARDIANAH E. Sleep duration and insulin resistance in obese adolescents with metabolic syndrome: is there a correlation?[J]. Acta Biomed, 2023, 94(4): e2023079.
    [19] GUEDES L G, ABREU G A, BLOCH K V. Self-reported nocturnal sleep duration and glycosylated hemoglobin A in the Study of Cardiovascular Risks in Adolescents(ERICA)[J]. Sleep Med, 2018, 47: 60-65. doi: 10.1016/j.sleep.2018.03.013
    [20] FORKERT E C O, MORAES A C F, CARVALHO H B, et al. Skipping breakfast is associated with adiposity markers especially when sleep time is adequate in adolescents[J]. Sci Rep, 2019, 9(1): 6380. doi: 10.1038/s41598-019-42859-7
    [21] HUGHES E K, MUNDY L K, ROMANIUK H, et al. Body image dissatisfaction and the adrenarchal transition[J]. J Adolesc Health, 2018, 63(5): 621-627. doi: 10.1016/j.jadohealth.2018.05.025
    [22] LIANG X H, HE X Q, LIU Q, et al. The impact of dietary and sleep rhythms on blood pressure in children and adolescents: a cross-sectional study[J]. Hypertens Res, 2024, 47(3): 649-662. doi: 10.1038/s41440-023-01493-7
    [23] MANOOGIAN E N C, PANDA S. Circadian rhythms, time-restricted feeding, and healthy aging[J]. Ageing Res Rev, 2017, 39: 59-67. doi: 10.1016/j.arr.2016.12.006
    [24] HOU T F, SU W, DUNCAN M J, et al. Time-restricted feeding protects the blood pressure circadian rhythm in diabetic mice[J]. Proc Natl Acad Sci USA, 2021, 118(25): e2015873118. doi: 10.1073/pnas.2015873118
    [25] HONMA S. Development of the mammalian circadian clock[J]. Eur J Neurosci, 2020, 51(1): 182-193. doi: 10.1111/ejn.14318
    [26] COSTELLO H M, GUMZ M L. Circadian rhythm, clock genes, and hypertension: recent advances in hypertension[J]. Hypertension, 2021, 78(5): 1185-1196. doi: 10.1161/HYPERTENSIONAHA.121.14519
    [27] YANG G, CHEN L, GRANT G R, et al. Timing of expression of the core clock gene bmal1 influences its effects on aging and survival[J]. Sci Transl Med, 2016, 8(324): 316-324.
    [28] HARFMANN B D, SCHRODER E A, KACHMAN M T, et al. Muscle-specific loss of bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis[J]. Skelet Muscle, 2016, 6: 12. doi: 10.1186/s13395-016-0082-x
    [29] AMARAL F G D, CIPOLLA-NETO J. A brief review about melatonin, a pineal hormone[J]. Arch Endocrinol Metab, 2018, 62(4): 472-479. doi: 10.20945/2359-3997000000066
    [30] CROWLEY S J, CAIN S W, BURNS A C, et al. Increased sensitivity of the circadian system to light in early/mid-puberty[J]. J Clin Endocrinol Metab, 2015, 100(11): 4067-4073. doi: 10.1210/jc.2015-2775
    [31] LIN L Z, ZENG X W, DEB B, et al. Outdoor light at night, overweight, and obesity in school-aged children and adolescents[J]. Environ Pollut, 2022, 305: 119306. doi: 10.1016/j.envpol.2022.119306
    [32] OVERBERG J, KALVERAM L, KELLER T, et al. Interactions between nocturnal melatonin secretion, metabolism, and sleeping behavior in adolescents with obesity[J]. Int J Obes (Lond), 2022, 46(5): 1051-1058. doi: 10.1038/s41366-022-01077-4
    [33] PAULIS L, SIMKO F. Blood pressure modulation and cardiovascular protection by melatonin: potential mechanisms behind[J]. Physiol Res, 2007, 56(6): 671-684.
    [34] AGIL A, NAVARRO-ALARCÓN M, RUIZ R, et al. Beneficial effects of melatonin on obesity and lipid profile in young zucker diabetic fatty rats[J]. J Pineal Res, 2011, 50(2): 207-212. doi: 10.1111/j.1600-079X.2010.00830.x
    [35] BOUZAS I C, CADER S A, LEÃO L, et al. Menstrual cycle alterations during adolescence: early expression of metabolic syndrome and polycystic ovary syndrome[J]. J Pediatr Adolesc Gynecol, 2014, 27(6): 335-341. doi: 10.1016/j.jpag.2014.01.002
    [36] PINOLA P, LASHEN H, BLOIGU A, et al. Menstrual disorders in adolescence: a marker for hyperandrogenaemia and increased metabolic risks in later life? Finnish general population-based birth cohort study[J]. Hum Reprod, 2012, 27(11): 3279-3286. doi: 10.1093/humrep/des309
    [37] GLUECK C J, WOO J G, KHOURY P R, et al. Adolescent oligomenorrhea (age 14-19) tracks into the third decade of life (age 20-28) and predicts increased cardiovascular risk factors and metabolic syndrome[J]. Metabolism, 2015, 64(4): 539-553. doi: 10.1016/j.metabol.2015.01.005
    [38] PRASHER D, GREENWAY S C, SING R B et al. The impact of epigenetics on cardiovascular disease[J]. Biochem Cell Biol, 2020, 98(1): 12-22. doi: 10.1139/bcb-2019-0045
    [39] AGBARIA S, HAIM A, FARES F, et al. Epigenetic modification in 4T1 mouse breast cancer model by artificial light at night and melatonin: the role of DNA methyltransferase[J]. Chronobiol Int, 2019, 36(5): 629-643. doi: 10.1080/07420528.2019.1574265
    [40] MADSEN A, HÖPPNER G, KRAUSE J, et al. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility[J]. Circulation, 2020, 142(16): 1562-1578. doi: 10.1161/CIRCULATIONAHA.119.044444
    [41] PAPAIT R, SERIO S, PAGIATAKIS C, et al. Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy[J]. Circulation, 2017, 136(13): 1233-1246. doi: 10.1161/CIRCULATIONAHA.117.028561
    [42] LENG Y, WU Y, LEI S Q, et al. Inhibition of HDAC6 activity alleviates myocardial ischemia/reperfusion injury in diabetic rats: potential role of peroxiredoxin 1 acetylation and redox regulation[J]. Oxid Med Cell Longev, 2018, 2018: 9494052.
    [43] WOJCIECHOWSKA A, BRANIEWSKA A, KOZAR-KAMINSKA K. MicroRNA in cardiovascular biology and disease[J]. Adv Clin Exp Med, 2017, 26(5): 865-874.
    [44] KOJIMA S, GREEN C B. Circadian genomics reveal a role for post-transcriptional regulation in mammals[J]. Biochemistry, 2015, 54(2): 124-133. doi: 10.1021/bi500707c
    [45] COON S L, MUNSON P J, CHERUKURI P F, et al. Circadian changes in long noncoding RNAs in the pineal gland[J]. Proc Natl Acad Sci, 2012, 109(33): 13319-13324. doi: 10.1073/pnas.1207748109
    [46] ROTTIERS V, NÄÄR A M. MicroRNAs in metabolism and metabolic disorders[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 239-250. doi: 10.1038/nrm3313
    [47] 杨鑫, 胡炎伟. 长链非编码RNA在动脉粥样硬化发生发展中的作用机制及临床价值[J]. 中华检验医学杂志, 2023, 46(7): 741-747.

    YANG X, HU Y W. Mechanism and clinical value of long non-coding RNA in the development of atherosclerosis[J]. Chin J Lab Med, 2023, 46(7): 741-747. (in Chinese)
    [48] TAO W W, CHEN S Y, SHI G S, et al. SWItch/sucrose nonfermentable (SWI/SNF) complex subunit Baf60a integrates hepatic circadian clock and energy metabolism[J]. Hepatology, 2011, 54(4): 1410-1420. doi: 10.1002/hep.24514
    [49] CHEN S Y, DING Y, ZHANG Z, et al. Hyperlipidaemia impairs the circadian clock and physiological homeostasis of vascular smooth muscle cells via the suppression of Smarcd1[J]. J Pathol, 2014, 233(2): 159-169. doi: 10.1002/path.4338
    [50] CIPOLLA-NETO J, AMARAL F G, AFECHE S C, et al. Melatonin, energy metabolism, and obesity: a review[J]. J Pineal Res, 2014, 56(4): 371-381. doi: 10.1111/jpi.12137
    [51] BODEN G, RUIZ J, URBAIN J L, et al. Evidence for a circadian rhythm of insulin secretion[J]. Am J Physiol, 1996, 271(2 Pt 1): 246-252.
    [52] SCHMID S M, JAUCH-CHARA K, HALLSCHMID M, et al. Mild sleep restriction acutely reduces plasma glucagon levels in healthy men[J]. J Clin Endocrinol Metab, 2009, 94(12): 5169-5173. doi: 10.1210/jc.2009-0969
    [53] CASTANON-CERVANTES O, WU M, EHLEN J C, et al. Dysregulation of inflammatory responses by chronic circadian disruption[J]. J Immunol, 2010, 185(10): 5796-5805. doi: 10.4049/jimmunol.1001026
  • 加载中
表(1)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  9
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 修回日期:  2024-03-30
  • 网络出版日期:  2024-04-25
  • 刊出日期:  2024-04-25

目录

    /

    返回文章
    返回