留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉络膜生理特性及其与儿童青少年近视的关联

梁刚 潘臣炜

梁刚, 潘臣炜. 脉络膜生理特性及其与儿童青少年近视的关联[J]. 中国学校卫生, 2024, 45(2): 296-299. doi: 10.16835/j.cnki.1000-9817.2024025
引用本文: 梁刚, 潘臣炜. 脉络膜生理特性及其与儿童青少年近视的关联[J]. 中国学校卫生, 2024, 45(2): 296-299. doi: 10.16835/j.cnki.1000-9817.2024025
LIANG Gang, PAN Chenwei. Physiological characteristics of the choroid and its association with myopia in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(2): 296-299. doi: 10.16835/j.cnki.1000-9817.2024025
Citation: LIANG Gang, PAN Chenwei. Physiological characteristics of the choroid and its association with myopia in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(2): 296-299. doi: 10.16835/j.cnki.1000-9817.2024025

脉络膜生理特性及其与儿童青少年近视的关联

doi: 10.16835/j.cnki.1000-9817.2024025
基金项目: 

云南省科技厅昆医联合专项重点项目 202301AY070001-017

国家自然科学基金 82160204

详细信息
    作者简介:

    梁刚(1974-),女,广西岑溪人,博士,副主任医师,主要研究方向为近视防控和矫治

    通讯作者:

    潘臣炜,E-mail: pcwonly@gmail.com

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R778.1+1  R773.4  R179

Physiological characteristics of the choroid and its association with myopia in children and adolescents

  • 摘要: 脉络膜是位于巩膜和Bruch膜之间的一个多功能动态结构,可能参与了眼球生长调节与近视发展,脉络膜厚度可能是预测儿童青少年近视发展及治疗防控效果的重要生物标志物。研究对脉络膜的生理结构、测量方法进行了综述和总结,探讨了脉络膜的影响因素,包括年龄、生理变化、屈光状态和眼轴长度、药物影响及光学环境等,指出了脉络膜厚度在儿童青少年近视研究中可能的应用。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • [1] NICKLA D L, WALLMAN J. The multifunctional choroid[J]. Prog Retin Eye Res, 2010, 29(2): 144-168. doi: 10.1016/j.preteyeres.2009.12.002
    [2] TROILO D, SMITH E L, NICKLA D L, et al. IMI-report on experimental models of emmetropization and myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M31-M88. doi: 10.1167/iovs.18-25967
    [3] WALLMAN J, WILDSOET C, XU A, et al. Moving the retina: choroidal modulation of refractive state[J]. Vision Res, 1995, 35(1): 37-50. doi: 10.1016/0042-6989(94)E0049-Q
    [4] JIN P, ZOU H, ZHU J, et al. Choroidal and retinal thickness in children with different refractive status measured by swept-source optical coherence tomography[J]. Am J Ophthalmol, 2016, 168: 164-176. doi: 10.1016/j.ajo.2016.05.008
    [5] JIN P, ZOU H, XU X, et al. Longitudinal changes in choroidal and retinal thicknesses in children with myopic shift[J]. Retina, 2019, 39(6): 1091-1099. doi: 10.1097/IAE.0000000000002090
    [6] MORIYAMA M, OHNO-MATSUI K, FUTAGAMI S, et al. Morphology and long-term changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma[J]. Ophthalmology, 2007, 114(9): 1755-1762. doi: 10.1016/j.ophtha.2006.11.034
    [7] READ S A, ALONSO-CANEIRO D, VINCENT S J, et al. Longitudinal changes in choroidal thickness and eye growth in childhood[J]. Invest Ophthalmol Vis Sci, 2015, 56(5): 3103-3112. doi: 10.1167/iovs.15-16446
    [8] NISHIDA Y, FUJIWARA T, IMAMURA Y, et al. Choroidal thickness and visual acuity in highly myopic eyes[J]. Retina, 2012, 32(7): 1229-1236. doi: 10.1097/IAE.0b013e318242b990
    [9] WANG N K, LAI C C, CHOU C L, et al. Choroidal thickness and biometric markers for the screening of lacquer cracks in patients with high myopia[J]. PLoS One, 2013, 8(1): e53660. doi: 10.1371/journal.pone.0053660
    [10] ULAGANATHAN S, READ S A, COLLINS M J, et al. Daily axial length and choroidal thickness variations in young adults: associations with light exposure and longitudinal axial length and choroid changes[J]. Exp Eye Res, 2019, 189: 107850. doi: 10.1016/j.exer.2019.107850
    [11] OSTRIN L A, HARB E, NICKLA D L, et al. IMI-the dynamic choroid: new insights, challenges, and potential significance for human myopia[J]. Invest Ophthalmol Vis Sci, 2023, 64(6): 4. doi: 10.1167/iovs.64.6.4
    [12] WU H, CHEN W, ZHAO F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci USA, 2018, 115(30): E7091-E7100.
    [13] LIU Y, WANG L, XU Y, et al. The influence of the choroid on the onset and development of myopia: from perspectives of choroidal thickness and blood flow[J]. Acta Ophthalmol, 2021, 99(7): 730-738. doi: 10.1111/aos.14773
    [14] PLATZL C, KASER-EICHBERGER A, BENAVENTE-PEREZ A, et al. The choroid-sclera interface: an ultrastructural study[J]. Heliyon, 2022, 8(5): e09408. doi: 10.1016/j.heliyon.2022.e09408
    [15] FIELDS M A, DEL PRIORE L V, ADELMAN R A, et al. Interactions of the choroid, Bruch's membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier[J]. Prog Retin Eye Res, 2020, 76: 100803. doi: 10.1016/j.preteyeres.2019.100803
    [16] ALM A, BILL A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues[J]. Exp Eye Res, 1973, 15(1): 15-29. doi: 10.1016/0014-4835(73)90185-1
    [17] FUJIWARA A, SHIRAGAMI C, SHIRAKATA Y, et al. Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes[J]. Jpn J Ophthalmol, 2012, 56(3): 230-235. doi: 10.1007/s10384-012-0128-5
    [18] QI Y, LI L, ZHANG F. Choroidal thickness in Chinese children aged 8 to 11 years with mild and moderate myopia[J]. J Ophthalmol, 2018, 2018: 7270127.
    [19] DELSHAD S, COLLINS M J, READ S A, et al. The time course of the onset and recovery of axial length changes in response to imposed defocus[J]. Sci Rep, 2020, 10(1): 8322. doi: 10.1038/s41598-020-65151-5
    [20] SWIATCZAK B, SCHAEFFEL F. Emmetropic, but not myopic human eyes distinguish positive defocus from calculated blur[J]. Invest Ophthalmol Vis Sci, 2021, 62(3): 14. doi: 10.1167/iovs.62.3.14
    [21] KUGELMAN J, ALONSO-CANEIRO D, READ S A, et al. Automatic choroidal segmentation in OCT images using supervised deep learning methods[J]. Sci Rep, 2019, 9(1): 13298. doi: 10.1038/s41598-019-49816-4
    [22] ZHANG H, YANG J, ZHOU K, et al. Automatic segmentation and visualization of choroid in OCT with knowledge infused deep learning[J]. IEEE J Biomed Health Inform, 2020, 24(12): 3408-3420. doi: 10.1109/JBHI.2020.3023144
    [23] 周愉, 张敏, 朱瑜洁, 等. 深度学习在脉络膜分割中的应用研究进展[J]. 国际眼科杂志, 2023, 23(6): 1007-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK202306025.htm

    ZHOU Y, ZHANG M, ZHU Y J, et al. Research progress on the application of deep learning in choroidal segmentation[J]. Int Eye Sci, 2023, 23(6): 1007-1011. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK202306025.htm
    [24] CHAKRABORTY R, READ S A, COLLINS M J. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes[J]. Exp Eye Res, 2012, 103: 47-54. doi: 10.1016/j.exer.2012.08.002
    [25] HOSEINI-YAZDI H, VINCENT S J, COLLINS M J, et al. Regional alterations in human choroidal thickness in response to short-term monocular hemifield myopic defocus[J]. Ophthalmic Physiol Opt, 2019, 39(3): 172-182. doi: 10.1111/opo.12609
    [26] LIM J I, FLOWER R W. Indocyanine green angiography[J]. Int Ophthalmol Clin, 1995, 35(4): 59-70.
    [27] SPAIDE R F, KLANCNIK J M, COONEY M J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50. doi: 10.1001/jamaophthalmol.2014.3616
    [28] WEI X, BALNE P K, MEISSNER K E, et al. Assessment of flow dynamics in retinal and choroidal microcirculation[J]. Surv Ophthalmol, 2018, 63(5): 646-664. doi: 10.1016/j.survophthal.2018.03.003
    [29] IWASE T, YAMAMOTO K, RA E, et al. Diurnal variations in blood flow at optic nerve head and choroid in healthy eyes: diurnal variations in blood flow[J]. Medicine (Baltimore), 2015, 94(6): e519. doi: 10.1097/MD.0000000000000519
    [30] DE CARLO T E, ROMANO A, WAHEED N K, et al. A review of optical coherence tomography angiography (OCTA)[J]. Int J Retina Vitreous, 2015, 1: 5. doi: 10.1186/s40942-015-0005-8
    [31] PONGSACHAREONNONT P, SOMKIJRUNGROJ T, ASSAVAPON-GPAIBOON B, et al. Foveal and parafoveal choroidal thickness pattern measuring by swept source optical coherence tomography[J]. Eye (Lond), 2019, 33(9): 1443-1451. doi: 10.1038/s41433-019-0404-4
    [32] XIONG S, HE X, ZHANG B, et al. Changes in choroidal thickness varied by age and refraction in children and adolescents: a 1-year longitudinal study[J]. Am J Ophthalmol, 2020, 213: 46-56. doi: 10.1016/j.ajo.2020.01.003
    [33] LIN C Y, HUANG Y L, HSIA W P, et al. Correlation of choroidal thickness with age in healthy subjects: automatic detection and segmentation using a deep learning model[J]. Int Ophthalmol, 2022, 42(10): 3061-3070. doi: 10.1007/s10792-022-02292-8
    [34] BROWN J S, FLITCROFT D I, YING G S, et al. In vivo human choroidal thickness measurements: evidence for diurnal fluctuations[J]. Invest Ophthalmol Vis Sci, 2009, 50(1): 5-12. doi: 10.1167/iovs.08-1779
    [35] SAYIN N, KARA N, PEKEL G, et al. Choroidal thickness changes after dynamic exercise as measured by spectral-domain optical coherence tomography[J]. Ind J Ophthalmol, 2015, 63(5): 445-450. doi: 10.4103/0301-4738.159884
    [36] OSTRIN L A, JNAWALI A, CARKEET A, et al. Twenty-four hour ocular and systemic diurnal rhythms in children[J]. Ophthalmic Physiol Opt, 2019, 39(5): 358-369. doi: 10.1111/opo.12633
    [37] KIM M, KIM S S, KWON H J, et al. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study[J]. Invest Ophthalmol Vis Sci, 2012, 53(12): 7710-7717. doi: 10.1167/iovs.12-10464
    [38] SANSOM L T, SUTER C A, MCKIBBIN M. The association between systolic blood pressure, ocular perfusion pressure and subfoveal choroidal thickness in normal individuals[J]. Acta Ophthalmol, 2016, 94(2): e157-e158.
    [39] READ S A, FUSS J A, VINCENT S J, et al. Choroidal changes in human myopia: insights from optical coherence tomography imaging[J]. Clin Exp Optom, 2019, 102(3): 270-285. doi: 10.1111/cxo.12862
    [40] JONAS J B, WANG Y X, DONG L, et al. Advances in myopia research anatomical findings in highly myopic eyes[J]. Eye Vis (Lond), 2020, 7: 45. doi: 10.1186/s40662-020-00210-6
    [41] PROUSALI E, DASTIRIDOU A, ZIAKAS N, et al. Choroidal thickness and ocular growth in childhood[J]. Surv Ophthalmol, 2021, 66(2): 261-275. doi: 10.1016/j.survophthal.2020.06.008
    [42] READ S A, COLLINS M J, VINCENT S J, et al. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7578-7586. doi: 10.1167/iovs.13-12772
    [43] ZHANG S, ZHANG G, ZHOU X, et al. Changes in choroidal thickness and choroidal blood perfusion in Guinea Pig Myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083. doi: 10.1167/iovs.18-26397
    [44] AGAWA T, MIURA M, IKUNO Y, et al. Choroidal thickness measurement in healthy Japanese subjects by three-dimensional high-penetration optical coherence tomography[J]. Graefes Arch Clin Exp Ophthalmol, 2011, 249(10): 1485-1492. doi: 10.1007/s00417-011-1708-7
    [45] HARB E, HYMAN L, GWIAZDA J, et al. Choroidal thickness profiles in myopic eyes of young adults in the correction of myopia evaluation trial cohort[J]. Am J Ophthalmol, 2015, 160(1): 62-71. doi: 10.1016/j.ajo.2015.04.018
    [46] LI X Q, JEPPESEN P, LARSEN M, et al. Subfoveal choroidal thickness in 1323 children aged 11 to 12 years and association with puberty: the Copenhagen child cohort 2000 eye study[J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 550-555. doi: 10.1167/iovs.13-13476
    [47] TAN C S, CHEONG K X, LIM L W, et al. Topographic variation of choroidal and retinal thicknesses at the macula in healthy adults[J]. Br J Ophthalmol, 2014, 98(3): 339-344. doi: 10.1136/bjophthalmol-2013-304000
    [48] LI W, JIANG R, ZHU Y, et al. Effect of 0.01% atropine eye drops on choroidal thickness in myopic children[J]. J Fr Ophtalmol, 2020, 43(9): 862-868. doi: 10.1016/j.jfo.2020.04.023
    [49] YE L, SHI Y, YIN Y, et al. Effects of atropine treatment on choroidal thickness in myopic children[J]. Invest Ophthalmol Vis Sci, 2020, 61(14): 15. doi: 10.1167/iovs.61.14.15
    [50] OGAWA M, TORⅡ H, YOTSUKURA E, et al. Intensive outdoor activity for 1 week increased choroidal thickness[J]. Invest Ophthalmol Vis Sci, 2022, 63(7): 246-A0100.
    [51] 翟露露, 伍晓艳, 许韶君, 等. 接触阳光与儿童近视关联的研究进展[J]. 中华流行病学杂志, 2016, 37(11): 1555-1560. doi: 10.3760/cma.j.issn.0254-6450.2016.11.023

    ZHAI L L, WU X Y, XU S J, et al. Progress in research of association between myopia and sunlight exposure in children[J]. Chin J Epidemiol, 2016, 37(11): 1555-1560. (in Chinese) doi: 10.3760/cma.j.issn.0254-6450.2016.11.023
    [52] WU P C, CHEN C T, LIN K K, et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial[J]. Ophthalmology, 2018, 125(8): 1239-1250. doi: 10.1016/j.ophtha.2017.12.011
    [53] XIONG F, MAO T, LIAO H, et al. Orthokeratology and low-intensity laser therapy for slowing the progression of myopia in children[J]. Biomed Res Int, 2021, 2021: 8915867.
    [54] LAN W, FELDKAEMPER M, SCHAEFFEL F. Bright light induces choroidal thickening in chickens[J]. Optom Vis Sci, 2013, 90(11): 1199-1206. doi: 10.1097/OPX.0000000000000074
    [55] LOU L, OSTRIN L A. Effects of narrowband light on choroidal thickness and the pupil[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 40. doi: 10.1167/iovs.61.10.40
    [56] LI Z, HU Y, CUI D, et al. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length[J]. Acta Ophthalmol, 2019, 97(3): e454-e459.
    [57] WOLFFSOHN J S, KOLLBAUM P S, BERNTSEN D A, et al. IMI-clinical myopia control trials and instrumentation report[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M132-M160.
  • 加载中
计量
  • 文章访问数:  94
  • HTML全文浏览量:  57
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-04
  • 修回日期:  2023-11-20
  • 网络出版日期:  2024-03-02
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回