[1] |
KUZNIA A L, HERNANDEZ A K, LEE L U. Adolescent idiopathic scoliosis: common questions and answers[J]. Am Fam Physician, 2020, 101(1): 19-23.
|
[2] |
赵树山. 特发性脊柱侧凸流行病学、遗传易感性及治疗的系统评价[D]. 长沙: 中南大学, 2014.ZHAO S S. Systematic review of the epidemiology, genetic predisposition and treatment of idiopathic scoliosis[D]. Changsha: Central South University, 2014. (in Chinese)
|
[3] |
SAVVIDES P, GERDHEM P, GRAUERS A, et al. Self-experienced trunk appearance in individuals with and without idiopathic scoliosis[J]. Spine, 2020, 45(8): 522-527. doi: 10.1097/BRS.0000000000003308
|
[4] |
ERWIN J, CARLSON B B, BUNCH J, et al. Impact of unoperated adolescent idiopathic scoliosis in adulthood: a 10-year analysis[J]. Spine Deform, 2020, 8(5): 1009-1016. doi: 10.1007/s43390-020-00142-0
|
[5] |
GIAMPIETRO P F, HADLEY-MILLER N, RAGGIO C L. Overview of gene special issue "genetic conditions affecting the skeleton: congenital, idiopathic scoliosis and arthrogryposis"[J]. Genes, 2022, 13(7): 1194. doi: 10.3390/genes13071194
|
[6] |
PENG Y, WANG S R, QIU G X, et al. Research progress on the etiology and pathogenesis of adolescent idiopathic scoliosis[J]. Chin Med J, 2020, 133(4): 483-493. doi: 10.1097/CM9.0000000000000652
|
[7] |
LIANG Z T, GUO C F, LI J, et al. The role of endocrine hormones in the pathogenesis of adolescent idiopathic scoliosis[J]. Faseb J, 2021, 35(9): e21839. doi: 10.1096/fj.202100759R
|
[8] |
BARBA N, IGNASIAK D, VILLA T M T, et al. Assessment of trunk muscle activation and intervertebral load in adolescent idiopathic scoliosis by musculoskeletal modelling approach[J]. J Biomech, 2021, 114: 110154. doi: 10.1016/j.jbiomech.2020.110154
|
[9] |
KAMAL Z, ROUHI G, ARJMAND N, et al. A stability-based model of a growing spine with adolescent idiopathic scoliosis: a combination of musculoskeletal and finite element approaches[J]. Med Eng Phys, 2019, 64: 46-55. doi: 10.1016/j.medengphy.2018.12.015
|
[10] |
WATANABE K, MICHIKAWA T, YONEZAWA I, et al. Physical activities and lifestyle factors related to adolescent idiopathic scoliosis[J]. J Bone Joint Surg Am, 2017, 99(4): 284-294. doi: 10.2106/JBJS.16.00459
|
[11] |
LIU T, CHU W C, YOUNG G, et al. MR analysis of regional brain volume in adolescent idiopathic scoliosis: neurological manifestation of a systemic disease[J]. J Magn Reson Imag, 2008, 27(4): 732-736. doi: 10.1002/jmri.21321
|
[12] |
JOLY O, ROUSIE D, JISSENDI P, et al. A new approach to corpus callosum anomalies in idiopathic scoliosis using diffusion tensor magnetic resonance imaging[J]. Eur Spine J, 2014, 23(12): 2643-2649. doi: 10.1007/s00586-014-3435-3
|
[13] |
XUE C, SHI L, HUI S C N, et al. Altered white matter microstructure in the corpus callosum and its cerebral interhemispheric tracts in adolescent idiopathic scoliosis: diffusion tensor imaging analysis[J]. Am J Neuroradiol, 2018, 39(6): 1177-1184. doi: 10.3174/ajnr.A5634
|
[14] |
FORMAGGIO E, BERTUCCELLI M, RUBEGA M, et al. Brain oscillatory activity in adolescent idiopathic scoliosis[J]. Sci Rep, 2022, 12(1): 17266. doi: 10.1038/s41598-022-19449-1
|
[15] |
BOCEK V, KRBEC M, VASKO P, et al. Alteration of cortical but not spinal inhibitory circuits in idiopathic scoliosis[J]. J Spinal Cord Med, 2022, 45(2): 186-193. doi: 10.1080/10790268.2020.1739893
|
[16] |
DOMENECH J, GARCIA-MARTI G, MARTI-BONMATI L, et al. Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI[J]. Eur Spine J, 2011, 20(7): 1069-1078. doi: 10.1007/s00586-011-1776-8
|
[17] |
LEE R K, GRIFFITH J F, LEUNG J H, et al. Effect of upright position on tonsillar level in adolescent idiopathic scoliosis[J]. Eur Radiol, 2015, 25(8): 2397-2402. doi: 10.1007/s00330-015-3597-3
|
[18] |
SHI L, WANG D, HUI S C, et al. Volumetric changes in cerebellar regions in adolescent idiopathic scoliosis compared with healthy controls[J]. Spine J, 2013, 13(12): 1904-1911. doi: 10.1016/j.spinee.2013.06.045
|
[19] |
DENG M, HUI S C N, YU F W P, et al. MRI-based morphological evidence of spinal cord tethering predicts curve progression in adolescent idiopathic scoliosis[J]. Spine J, 2015, 15(6): 1391-401. doi: 10.1016/j.spinee.2015.02.033
|
[20] |
KONG Y, SHI L, HUI S C, et al. Variation in anisotropy and diffusivity along the medulla oblongata and the whole spinal cord in adolescent idiopathic scoliosis: a pilot study using diffusion tensor imaging[J]. Am J Neuroradiol, 2014, 35(8): 1621-1627. doi: 10.3174/ajnr.A3912
|
[21] |
CHU W C, MAN G C, LAM W W, et al. Morphological and functional electrophysiological evidence of relative spinal cord tethering in adolescent idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2008, 33(6): 673-680. doi: 10.1097/BRS.0b013e318166aa58
|
[22] |
SHI L, WANG D, CHU W C, et al. Automatic MRI segmentation and morphoanatomy analysis of the vestibular system in adolescent idiopathic scoliosis[J]. Neuroimage, 2011, 54(Suppl 1): S180-S188.
|
[23] |
CARRY P M, DUKE V R, BRAZELL C J, et al. Lateral semi-circular canal asymmetry in females with idiopathic scoliosis[J]. PLoS One, 2020, 15(4): e0232417. doi: 10.1371/journal.pone.0232417
|
[24] |
HITIER M, HAMON M, DENISE P, et al. Lateral semicircular canal asymmetry in idiopathic scoliosis: an early link between biomechanical, hormonal and neurosensory theories?[J]. PLoS One, 2015, 10(7): e0131120. doi: 10.1371/journal.pone.0131120
|
[25] |
白婧媛, 冯金升, 王健. 基于移动平台的姿势干扰及其神经生理调节研究进展[J]. 航天医学与医学工程, 2020, 33(6): 549-555. https://www.cnki.com.cn/Article/CJFDTOTAL-HYXB202006012.htmBAI J Y, FENG J S, WANG J. Research progress of postural interference based on movable platform and its neurophysiological adjustments[J]. Space Med Med Eng, 2020, 33(6): 549-555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYXB202006012.htm
|
[26] |
PIALASSE J P, MERCIER P, DESCARREAUX M, et al. A procedure to detect abnormal sensorimotor control in adolescents with idiopathic scoliosis[J]. Gait Posture, 2017, 57: 124-129. doi: 10.1016/j.gaitpost.2017.05.032
|
[27] |
WIERNICKA M, KOTWICKI T, KAMINSKA E, et al. Postural stability in adolescent girls with progressive idiopathic scoliosis[J]. Biomed Res Int, 2019, 2019: 7103546.
|
[28] |
DOMENECH J, BARRIOS C, TORMOS J M, et al. Somatosensory cortectomy induces motor cortical hyperexcitability and scoliosis: an experimental study in developing rats[J]. Spine J, 2013, 13(8): 938-946. doi: 10.1016/j.spinee.2013.03.002
|
[29] |
LAMBERT F M, MALINVAUD D, GRATACAP M, et al. Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations[J]. J Neurosci, 2013, 33(16): 6845-6856. doi: 10.1523/JNEUROSCI.4842-12.2013
|
[30] |
BARRIOS C, ARROTEGUI J I. Experimental kyphoscoliosis induced in rats by selective brain stem damage[J]. Int Orthop, 1992, 16(2): 146-151. doi: 10.1007/BF00180206
|
[31] |
DOMENECH J, TORMOS J M, BARRIOS C, et al. Motor cortical hyperexcitability in idiopathic scoliosis: could focal dystonia be a subclinical etiological factor?[J]. Eur Spine J, 2010, 19(2): 223-230. doi: 10.1007/s00586-009-1243-y
|
[32] |
SCHNEIDER E, NIETHARD F U, SCHIEK H, et al. How idiopathic is idiopathic scoliosis? Results of neurological studies with somatosensory evoked potentials (SSEP) in children and adolescents[J]. Z Orthop Ihre Grenzgeb, 1991, 129(4): 355-361.
|
[33] |
GUO X, CHAU W W, HUI-CHAN C W, et al. Balance control in adolescents with idiopathic scoliosis and disturbed somatosensory function[J]. Spine (Phila Pa 1976), 2006, 31(14): E437-E440. doi: 10.1097/01.brs.0000222048.47010.bf
|
[34] |
CHAU W W, CHU W C W, LAM T P, et al. Anatomical origin of abnormal somatosensory-evoked potential (SEP) in adolescent idiopathic scoliosis with different curve severity and correlation with cerebellar tonsillar level determined by MRI[J]. Spine, 2016, 41(10): E598-E604. doi: 10.1097/BRS.0000000000001345
|
[35] |
CHEN Z, QIU Y, MA W, et al. Comparison of somatosensory evoked potentials between adolescent idiopathic scoliosis and congenital scoliosis without neural axis abnormalities[J]. Spine J, 2014, 14(7): 1095-1098. doi: 10.1016/j.spinee.2013.07.465
|
[36] |
ANTONIADOU N, HATZITAKI V, STAVRIDIS S, et al. Verticality perception reveals a vestibular deficit in adolescents with idiopathic scoliosis[J]. Exp Brain Res, 2018, 236(6): 1725-1734. doi: 10.1007/s00221-018-5256-9
|
[37] |
WOO E J, SIEGMUND G P, REILLY C W, et al. Asymmetric unilateral vestibular perception in adolescents with idiopathic scoliosis[J]. Front Neurol, 2019, 10: 1270. doi: 10.3389/fneur.2019.01270
|
[38] |
LAU K K L, LAW K K P, KWAN K Y H, et al. Timely revisit of proprioceptive deficits in adolescent idiopathic scoliosis: a systematic review and Meta-analysis[J]. Global Spine J, 2022, 12(8): 1852-1861. doi: 10.1177/21925682211066824
|
[39] |
ASSAIANTE C, MALLAU S, JOUVE J L, et al. Do adolescent idiopathic scoliosis (AIS) neglect proprioceptive information in sensory integration of postural control?[J]. PLoS One, 2012, 7(7): e40646. doi: 10.1371/journal.pone.0040646
|
[40] |
陈楠. 青少年特发性脊柱侧凸的本体感觉与功能性动作特征[D]. 上海: 上海体育学院, 2018.CHEN N. The features of spinal proprioception and functional movement in adolescent idiopathic scoliosis[D]. Shanghai: Shanghai University of Sport, 2018. (in Chinese)
|
[41] |
HADERSPECK K, SCHULTZ A. Progression of idiopathic scoliosis: an analysis of muscle actions and body weight influences[J]. Spine (Phila Pa 1976), 1981, 6(5): 447-455. doi: 10.1097/00007632-198109000-00005
|
[42] |
HU Z S, ZHAO Z H, TSENG C C, et al. Abnormal activity of sympathetic nervous system in girls with adolescent idiopathic scoliosis: a cross-sectional study[J]. Biomed Environ Sci, 2018, 31(9): 700-704.
|
[43] |
BURWELL R G, AUJLA R K, GREVITT M P, et al. Pathogenesis of adolescent idiopathic scoliosis in girls-a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy[J]. Scoliosis, 2009, 4: 24. doi: 10.1186/1748-7161-4-24
|
[44] |
BURWELL R G, DANGERFIELD P H, FREEMAN B J. Etiologic theories of idiopathic scoliosis.somatic nervous system and the NOTOM escalator concept as one component in the pathogenesis of adolescent idiopathic scoliosis[J]. Stud Health Technol Inform, 2008, 140: 208-217.
|
[45] |
CZUPRYNA K, NOWOTNY-CZUPRYNA O, NOWOTNY J. Neuropathological aspects of conservative treatment of scoliosis.a theoretical view point[J]. Ortop Traumatol Rehabil, 2012, 14(2): 103-114. doi: 10.5604/15093492.992293
|
[46] |
KIM K, KIM Y H. Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture[J]. J Biomech Eng, 2008, 130(4): 041005. doi: 10.1115/1.2907739
|
[47] |
HATZILAZARIDIS I, HATZITAKI V, ANTONIADOU N, et al. Postural and muscle responses to galvanic vestibular stimulation reveal a vestibular deficit in adolescents with idiopathic scoliosis[J]. Eur J Neurosci, 2019, 50(10): 3614-3626. doi: 10.1111/ejn.14525
|
[48] |
MAGUIRE J, MADIGAN R, WALLACE S, et al. Intraoperative long-latency reflex activity in idiopathic scoliosis demonstrates abnormal central processing: a possible cause of idiopathic scoliosis[J]. Spine (Phila Pa 1976), 1993, 18(12): 1621-1626. doi: 10.1097/00007632-199309000-00009
|
[49] |
NG P T T, CLAUS A, IZATT M T, et al. Is spinal neuromuscular function asymmetrical in adolescents with idiopathic scoliosis compared to those without scoliosis? a narrative review of surface EMG studies[J]. J Electromyogr Kinesiol, 2022, 63: 102640. doi: 10.1016/j.jelekin.2022.102640
|