Volume 45 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
KONG Weisen, WANG Kailun, TUO Anxie, LI Bing, ZHENG Qubo, JIANG Huaibin. Building a predictive model for adolescent Internet gaming disorder based on machine learning[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(8): 1080-1085. doi: 10.16835/j.cnki.1000-9817.2024239
Citation: KONG Weisen, WANG Kailun, TUO Anxie, LI Bing, ZHENG Qubo, JIANG Huaibin. Building a predictive model for adolescent Internet gaming disorder based on machine learning[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(8): 1080-1085. doi: 10.16835/j.cnki.1000-9817.2024239

Building a predictive model for adolescent Internet gaming disorder based on machine learning

doi: 10.16835/j.cnki.1000-9817.2024239
  • Received Date: 2023-12-06
  • Rev Recd Date: 2024-07-03
  • Publish Date: 2024-08-25
  •   Objective  To explore the effectiveness of machine learning in predicting adolescent Internet gaming disorder, so as to provide guidance for formulating effective intervention measures.  Methods  From June to September, 2023, a total of 2 100 students from 3 middle schools and 3 high schools in Bijie City, Qianxi City and Jinsha County, Guizhou Province were selected by stratified random cluster sampling as research subjects. Data was collected by using several instruments, including the Nine-item Internet Gaming Disorder Scale-Short From (IGDS9-SF), Parental Psychological Control and Autonomy Support Questionnaire(PPCASQ), Motivation Structure Questionnaire, Relative Deprivation Questionnaire, Deviant Peer Association Questionnaire, and Dual Systems of Self-control Scale. Descriptive statistical analysis was conducted to characterize the sample features, and the distribution differences of categorical variables were analyzed by using Chi-square test and Mann-Whitney U test. Demographic variables and various influencing factors were served as independent variables, and whether adolescents were addicted to Internet gaming was the dependent variable. Various machine learning algorithms, including random forest, Logistic regression, support vector machine, gradient boosting trees, decision trees, and adaptive boosting were employed to construct predictive models.  Results  The detection rate of Internet gaming disorder among adolescents was 4.57% (96 cases). Males and middle school students had higher Internet gaming disorder detection rates (5.52%, 6.29%) than females and high school students (3.32%, 3.62%), and the differences were statistically significant (χ2=5.71, 7.86, P < 0.01).The scores of relative deprivation, deviant peer affiliation, paternal psychological control, maternal psychological control, control motivation, impulsive system and its dimensions (impulsivity, distractibility, low delay of gratification) in Internet gaming disorder group were higher than in non-Internet gaming disorder, while the score of parental autonomy support was lower than that in the non-Internet gaming disorder group (Z=-2.88, -9.32, -4.13, -4.48, -6.58, -7.50, -7.18, -7.56, -7.43, -2.27, P < 0.05). The adaptive boosting algorithm performed the best (accuracy=99%, recall=95%, F1 score=97%, AUC=0.96). Random forest and gradient boosting trees also performed excellently (accuracy=98%, recall=95%, F1 score=97%, 96%, AUC=0.96).  Conclusions  Compared to other models, the adaptive boosting algorithm shows a good predictive effectiveness for adolescent Internet gaming disorder. Appropriate models should be selected to identify individuals with Internet gaming disorder as early as possible, to develop effective intervention strategies and reduce the risk of Internet gaming disorder.
  • loading
  • [1]
    中国互联网络信息中心. 2021年全国未成年人互联网使用情况研究报告[EB/OL]. (2022-12-01)[2023-04-16]. http://www.cnnic.cn/n4/2022/1201/c135-10691.html.

    China Internet Network Information Center. Research report on Internet usage among minors in China, 2021[EB/OL]. (2022-12-01)[2023-04-16]. http://www.cnnic.cn/n4/2022/1201/c135-10691.html. (in Chinese)
    [2]
    YOUNG K S, DE ABREU C N. Internet addiction: a handbook and guide to evaluation and treatment[M]. Hoboken, NJ: John Wiley and Sons, Inc, 2011.
    [3]
    GRIFFITHS M D, KIRÁLY O, PONTES H M, et al. An overview of problematic gaming[M]//ABOUJAOUDE E, STARCEVIC V. Mental health in the digital age: grave dangers, great promise. Oxford: Oxford Univerty Press, 2015: 27-45.
    [4]
    WANG C W, HO R T, CHAN C L, et al. Exploring personality characteristics of Chinese adolescents with Internet-related addictive behaviors: trait differences for gaming addiction and social networking addiction[J]. Addict Behav, 2015, 42: 32-35. doi: 10.1016/j.addbeh.2014.10.039
    [5]
    YU C F, LI X, ZHANG W. Predicting adolescent problematic online game use from teacher autonomy support, basic psychological needs satisfaction and school engagement: a two-year longitudinal study[J]. Cyberpsychol Behav Soc Network, 2015, 18(4): 228-233. doi: 10.1089/cyber.2014.0385
    [6]
    HAWI N S, SAMAHA M, GRIFFITHS M D. Internet gaming disorder in Lebanon: relationships with age, sleep habits, and academic achievement[J]. J Behav Addict, 2018, 7(1): 70-78. doi: 10.1556/2006.7.2018.16
    [7]
    KIRBY A, JONES C, CAPELLO A. The impact of massively multiplayer online role playing games(morphs) on psychological well-being and the role of play motivations and problematic use[J]. Int J Ment Health Addict, 2014, 12(1): 36-51. doi: 10.1007/s11469-013-9467-9
    [8]
    JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. doi: 10.1126/science.aaa8415
    [9]
    MORENO M A, JELENCHICK L A, EGAN K G, et al. Feeling bad on Facebook: depression disclosures by college students on a social networking site[J]. Depress Anxiety, 2011, 28(6): 447-455. doi: 10.1002/da.20805
    [10]
    XING W, DU D. Dropout prediction in MOOCs: using deep learning for personalized intervention[J]. J Educ Comput Res, 2019, 57(3): 547-570. doi: 10.1177/0735633118757015
    [11]
    马鸣, 刘欢, 刘润香. 机器学习在大学生自杀意念预测中的应用[J]. 中国学校卫生, 2022, 43(5): 763-767. doi: 10.16835/j.cnki.1000-9817.2022.05.029

    MA M, LIU H, LIU R X. Application of machine learning in the prediction of college students' suicidal ideation[J]. Chin J Sch Health, 2022, 43(5): 763-767. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2022.05.029
    [12]
    MICHÉ M, STUDERUS E, MEYER A H, et al. Prospective prediction of suicide attempts in community adolescents and young adults, using regression methods and machine learning[J]. J Affect Dis, 2020, 265: 570-578. doi: 10.1016/j.jad.2019.11.093
    [13]
    PONTES H, STAVROPOULOS V, GRIFFITHS M. Measurement invariance of the Internet Gaming Disorder Scale-Short Form (IGDS9-SF) between the United States of America, India and the United Kingdom[J]. Psychiatry Res, 2017, 257: 472-478. doi: 10.1016/j.psychres.2017.08.013
    [14]
    QIN L, CHENG L, HU M, et al. Clarification of the cut-off score for Nine-Item Internet Gaming Disorder Scale-Short Form (IGDS9-SF) in a Chinese context[J]. Front Psychiatry, 2020(11): 470.
    [15]
    WANG Q, POMERANTZ E M, CHEN H. The role of parents' control in early adolescents' psychological functioning: a longitudinal investigation in the United States and China[J]. Child Dev, 2007, 78(5): 1592-1610. doi: 10.1111/j.1467-8624.2007.01085.x
    [16]
    许燕, 王萍萍. 基于动词分析的中国人人格结构模型探索[C]//中国心理学会. 增强心理学服务社会的意识和功能: 中国心理学会成立90周年纪念大会暨第十四届全国心理学学术会议论文摘要集. 北京: 北京师范大学心理学院, 2011: 2.

    XU Y, WANG P P. Exploration of the Chinese personality structure model based on verb analysis[C]//Chinese Psychological Society. Enhancing the consciousness and function of psychological services in society-commemorating the 90th anniversary of the Chinese psychological society and the abstracts of the fourteenth national academic conference on psychology. Beijing: School of Psychology, Beijing Normal University, 2011: 2. (in Chinese)
    [17]
    马皑. 相对剥夺感与社会适应方式: 中介效应和调节效应[J]. 心理学报, 2012, 44(3): 377-387. https://www.cnki.com.cn/Article/CJFDTOTAL-XLXB201203011.htm

    MA A. Relative deprivation and social adaptation methods: mediating and moderating effects[J]. Acta Psychol Sin, 2012, 44(3): 377-387. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XLXB201203011.htm
    [18]
    LI D, LI X, WANG Y, et al. School connectedness and problematic Internet use in adolescents: a moderated mediation model of deviant peer affiliation and self-control[J]. J Abnorm Child Psychol, 2013, 41(8): 1231-1242. doi: 10.1007/s10802-013-9761-9
    [19]
    谢东杰, 王利刚, 陶婷, 等. 青少年自我控制双系统量表中文版的效度和信度[J]. 中国心理卫生杂志, 2014, 28(5): 386-391. doi: 10.3969/j.issn.1000-6729.2014.05.012

    XIE D J, WANG L G, TAO T, et al. Validity and reliability of the Chinese version of the Dual-mode of Self-control Scale for Adolescents[J]. Chin Ment Health J, 2014, 28(5): 386-391. (in Chinese) doi: 10.3969/j.issn.1000-6729.2014.05.012
    [20]
    BADILLO S, BANFAI B, BIRZELE F, et al. An introduction to machine learning[J]. Clin Pharmacol Ther, 2020, 107(4): 871-885. doi: 10.1002/cpt.1796
    [21]
    CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. J Artific Intell Res, 2002, 16: 321-357. doi: 10.1613/jair.953
    [22]
    YU Y, MO P K H, ZHANG J, et al. Validation of the Expected Social Acceptance via Internet Gaming Scale (ESAIGS) among adolescent Internet gamers in China[J]. Int J Ment Health Addict, 2023, 21(2): 450-469.
    [23]
    张珊珊, 张野. 中学生压力生活事件和网游动机在角色依恋与网游成瘾间的作用[J]. 中国学校卫生, 2019, 40(10): 1517-1520. doi: 10.16835/j.cnki.1000-9817.2019.10.022

    ZHANG S S, ZHANG Y. Mediation of stressful life events and online game intention in the relationship between role attachment and Internet game addiction among middle school students[J]. Chin J Sch Health, 2019, 40(10): 1517-1520. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2019.10.022
    [24]
    董睿, 李雅超, 胡志民. 北京市本科生网络游戏动机与网络游戏成瘾的关系及其性别差异[J]. 医学与社会, 2023, 36(10): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-YXSH202310017.htm

    DONG R, LI Y C, HU Z M. Gender differences in the relationship between online gaming motivation and Internet gaming addiction among undergraduates in Beijing[J]. Med Soc, 2023, 36(10): 103-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YXSH202310017.htm
    [25]
    孙丽君, 刘子奇, 武涵, 等. 相对剥夺感对大学生网络游戏成瘾的影响: 基于虚拟化身-玩家关系的视角[J]. 中国临床心理学杂志, 2022, 30(6): 1276-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202206002.htm

    SUN L J, LIU Z Q, WU H, et al. The effect of relative deprivation on college students' online game addiction: from the perspective of avatar-player relationship[J]. Chin J Clin Psychol, 2022, 30(6): 1276-1281. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202206002.htm
    [26]
    YANG B, CAI G, XIONG C, et al. Relative deprivation and game addiction in left-behind children: a moderated mediation[J]. Front Psychol, 2021, 12: 639051. doi: 10.3389/fpsyg.2021.639051
    [27]
    李蒙蒙, 甘雄, 金鑫. 父母婚姻冲突与青少年网络游戏成瘾: 越轨同伴交往和神经质的多重中介作用[J]. 中国临床心理学杂志, 2020, 28(2): 354-358. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202002028.htm

    LI M M, GAN X, JIN X. Marital conflicts and Internet gaming disorder in adolescents: multiple mediations of deviant peer affiliation and neuroticism[J]. Chin J Clin Psychol, 2020, 28(2): 354-358. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202002028.htm
    [28]
    BRONFENBRENNER U, CECI S J. Nature-nurture reconceptualized in developmental perspective: a bioecological model[J]. Psychol Rev, 1994, 101(4): 568-586. doi: 10.1037/0033-295X.101.4.568
    [29]
    SHIMIL P, SRIVASTAVA A. Impact of parenting style and self-control on Internet gaming disorder among adolescents[J]. Int J Health Sci, 2022, 6(special issue 4): 1181-1195.
    [30]
    陈云祥, 李若璇, 刘翔平. 父母心理控制、自主支持与青少年外化问题行为: 控制动机的中介作用[J]. 中国临床心理学杂志, 2018, 26(5): 981-986. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY201805031.htm

    CHEN Y X, LI R X, LIU X P. Parental psychological control, autonomy support and externalizing problem behaviors in adolescents: the mediating role of control motivation[J]. Chin J Clin Psychol, 2018, 26(5): 981-986. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY201805031.htm
    [31]
    申子姣, 房超, 张锦涛, 等. 父母行为心理控制与青少年网络成瘾的关系[J]. 中国临床心理学杂志, 2012, 20(5): 652-655. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY201205021.htm

    SHEN Z J, FANG C, ZHANG J T, et al. Relationships among paternal and maternal control and Internet addiction of adolescents[J]. Chin J Clin Psychol, 2012, 20(5): 652-655. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY201205021.htm
    [32]
    邓林园, 刘晓彤, 唐远琼, 等. 父母心理控制、自主支持与青少年网络游戏成瘾: 冲动性的中介作用[J]. 中国临床心理学杂志, 2021, 29(2): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202102020.htm

    DENG L Y, LIU X T, TANG Y Q, et al. Parental psychological control, autonomy support and adolescent Internet gaming disorder: the mediating role of impulsivity[J]. Chin J Clin Psychol, 2021, 29(2): 316-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202102020.htm
    [33]
    MAZHARI S. Association between problematic Internet use and impulse control disorders among Iranian university students[J]. Cyberpsychol Behav Soc Network, 2012, 15(5): 270-273. doi: 10.1089/cyber.2011.0548
    [34]
    RAJULA H S R, VERLATO G, MANCHIA M, et al. Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment[J]. Medicina (Kaunas, Lithuania), 2020, 56(9): 455.
    [35]
    奚婉, 胡玉正. 青少年网络游戏成瘾的研究现状与展望[J]. 应用心理学, 2022, 28(1): 3-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YXNX202201001.htm

    XI W, HU Y Z. Internet gaming disorder in adolescents: review and prospect[J]. Appl Psychol, 2022, 28(1): 3-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YXNX202201001.htm
    [36]
    GRENDAS L N, CHIAPPELLA L, RODANTE D E, et al. Comparison of traditional model-based statistical methods with machine learning for the prediction of suicide behaviour[J]. J Psychiatr Res, 2022, 145: 85-91. doi: 10.1016/j.jpsychires.2021.11.029
    [37]
    ISLAM S, TUSHER A N, MIA M S, et al. A machine learning based approach to predict online gaming addiction in the context of bangladesh[C]//Proceedings of the 2022 13th international conference on computing communication and networking technologies (ICCCNT). Kharagpur, India: IEEE, 2022: 1-7.
    [38]
    DING Y, ZHU H, CHEN R, et al. An efficient AdaBoost algorithm with the multiple thresholds classification[J]. Appl Sci, 2022, 12(12): 5872.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (315) PDF downloads(69) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return