Volume 45 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
HAN Feifei, XIE Yang, TAO Fangbiao. Research progress on the association between biorhythm disorders and cardiovascular metabolic risk in adolescents and possible mechanisms[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(4): 599-603. doi: 10.16835/j.cnki.1000-9817.2024130
Citation: HAN Feifei, XIE Yang, TAO Fangbiao. Research progress on the association between biorhythm disorders and cardiovascular metabolic risk in adolescents and possible mechanisms[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(4): 599-603. doi: 10.16835/j.cnki.1000-9817.2024130

Research progress on the association between biorhythm disorders and cardiovascular metabolic risk in adolescents and possible mechanisms

doi: 10.16835/j.cnki.1000-9817.2024130
  • Received Date: 2024-02-18
  • Rev Recd Date: 2024-03-30
  • Available Online: 2024-04-25
  • Publish Date: 2024-04-25
  • Adolescence is a unique transitional period from childhood to adulthood, during which behavioral habits and physiological cycles undergo significant changes, and biorhythms are vulnerable to be disrupted. Meanwhile, due to increased rates of overweight and obesity, cardiovascular metabolic risk significantly increases during adolescence. The article reviews the prevalence, correlation, and potential epigenetic regulatory mechanisms of biorhythm disorders and adolescent cardiovascular metabolic health, providing a theoretical basis for regulating biorhythm to promote adolescent cardiovascular metabolic health.
  • loading
  • [1]
    健康中国促进委员会. 关于印发《健康中国行动2022工作要点》的通知[EB/OL]. (2019-07-29)[2023-01-28]. http://www.gov.cn/xinwen/2019-07/15/content_5409694.htm.

    Healthy China Promotion Committee. Notice on issuing the Work Points of Healthy China Action 2022[EB/OL]. (2019-07-29)[2023-01-28]. http://www.gov.cn/xinwen/2019-07/15/content_5409694.htm. (in Chinese)
    [2]
    ANDERSSON C, VASAN R S. Epidemiology of cardiovascular disease in young individuals[J]. Nat Rev Cardiol, 2018, 15(4): 230-240. doi: 10.1038/nrcardio.2017.154
    [3]
    ECKEL R H, KAHN R, ROBERTSON R M, et al. Preventing cardiovascular disease and diabetes: a call to action from the American Diabetes Association and the American Heart Association[J]. Circulation, 2006, 113(25): 2943-2946. doi: 10.1161/CIRCULATIONAHA.106.176583
    [4]
    马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2022》要点解读[J]. 中国全科医学, 2023, 26 (32): 3975-3994. https://www.cnki.com.cn/Article/CJFDTOTAL-QKYX202332001.htm

    MA L Y, WANG Z W, FAN J, et al. Interpretation of Report on Cardiovascular Health and Diseases in China 2022[J]. Chin Gen Pract, 2023, 26 (32): 3975-3994. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QKYX202332001.htm
    [5]
    LO K, KEUNG V, CHEUNG C, et al. Associations between sleep pattern and quality and cardiovascular risk factors among Macao school students[J]. Child Obes, 2019, 15(6): 387-396. doi: 10.1089/chi.2018.0319
    [6]
    MORALES-GHINAGLIA N, LARSEN M, HE F, et al. Circadian misalignment impacts the association of visceral adiposity with elevated blood pressure in adolescents[J]. Hypertension, 2023, 80(4): 861-871. doi: 10.1161/HYPERTENSIONAHA.122.20398
    [7]
    ZAKRZEWSKI-FRUER J K, MORARI V, CHAMPION R B, et al. Acute cardiometabolic and exercise responses to breakfast omission versus breakfast consumption in adolescent girls: a randomised crossover trial[J]. Nutrients, 2023, 15(14): 3210. doi: 10.3390/nu15143210
    [8]
    NOUBIAP J J, NANSSEU J R, LONTCHI-YIMAGOU E, et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: a systematic review and modelling analysis[J]. Lancet Child Adolesc Health, 2022, 6(3): 158-170. doi: 10.1016/S2352-4642(21)00374-6
    [9]
    MA H, LIU F C, YANG X L, et al. Association of short-term fine particulate matter exposure with pulmonary function in populations at intermediate to high-risk of cardiovascular disease: a panel study in three Chinese cities[J]. Ecotoxicol Environ Saf, 2021, 220: 112397. doi: 10.1016/j.ecoenv.2021.112397
    [10]
    DING W Q, CHENG H, YAN Y K, et al. 10-year trends in serum lipid levels and dyslipidemia among children and adolescents from several schools in Beijing, China[J]. J Epidemiol, 2016, 26(12): 637-645. doi: 10.2188/jea.JE20140252
    [11]
    胡霄, 姜红如, 张兵, 等. 中国十五省7~17岁儿童青少年心血管代谢性危险因素的流行特征[J]. 环境与职业医学, 2021, 38 (8): 833-838. https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX202108008.htm

    HU X, JIANG H R, ZHANG B, et al. Epidemiological characteristics of cardio-metabolic risk factors among children and adolescents aged 7-17 years in 15 provinces of China[J]. J Environ Occup Med, 2021, 38(8): 833-838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX202108008.htm
    [12]
    RGENOVESI S, GIUSSANI M, ORLANDO A, et al. Prevention of cardiovascular diseases in children and adolescents[J]. High Blood Press Cardiovasc Prev, 2019, 26(3): 191-197. doi: 10.1007/s40292-019-00316-6
    [13]
    ROENNEBERG T, MERROW M. The circadian clock and human health[J]. Curr Biol, 2016, 26(10): 432-443. doi: 10.1016/j.cub.2016.04.011
    [14]
    CHANG S W, KANG J W. Association between sleep time and blood pressure in Korean adolescents: cross-sectional analysis of KNHANES Ⅶ[J]. Children (Basel), 2021, 8(12): 1202.
    [15]
    LORENZO T, MARCO F, VINCENZO N. Sex difference in sleep-time preference and sleep need: a cross-sectional survey among Italian pre-adolescents, adolescents, and adults[J]. Chronobiol Int, 2008, 25(5): 745-759. doi: 10.1080/07420520802394191
    [16]
    SKRLEC I, MILIC J, STEINER R. The impact of the circadian genes CLOCK and ARNTL on myocardial infarction[J]. J Clin Med, 2020, 9(2): 484. doi: 10.3390/jcm9020484
    [17]
    DOS SANTOS E S G, DE SOUZA O F. Association of sleep duration and blood pressure in adolescents: a multicenter study[J]. Am J Hypertens, 2020, 33(1): 77-83. doi: 10.1093/ajh/hpz129
    [18]
    WIDJAJA N A, KURUBE C F, ARDIANAH E. Sleep duration and insulin resistance in obese adolescents with metabolic syndrome: is there a correlation?[J]. Acta Biomed, 2023, 94(4): e2023079.
    [19]
    GUEDES L G, ABREU G A, BLOCH K V. Self-reported nocturnal sleep duration and glycosylated hemoglobin A in the Study of Cardiovascular Risks in Adolescents(ERICA)[J]. Sleep Med, 2018, 47: 60-65. doi: 10.1016/j.sleep.2018.03.013
    [20]
    FORKERT E C O, MORAES A C F, CARVALHO H B, et al. Skipping breakfast is associated with adiposity markers especially when sleep time is adequate in adolescents[J]. Sci Rep, 2019, 9(1): 6380. doi: 10.1038/s41598-019-42859-7
    [21]
    HUGHES E K, MUNDY L K, ROMANIUK H, et al. Body image dissatisfaction and the adrenarchal transition[J]. J Adolesc Health, 2018, 63(5): 621-627. doi: 10.1016/j.jadohealth.2018.05.025
    [22]
    LIANG X H, HE X Q, LIU Q, et al. The impact of dietary and sleep rhythms on blood pressure in children and adolescents: a cross-sectional study[J]. Hypertens Res, 2024, 47(3): 649-662. doi: 10.1038/s41440-023-01493-7
    [23]
    MANOOGIAN E N C, PANDA S. Circadian rhythms, time-restricted feeding, and healthy aging[J]. Ageing Res Rev, 2017, 39: 59-67. doi: 10.1016/j.arr.2016.12.006
    [24]
    HOU T F, SU W, DUNCAN M J, et al. Time-restricted feeding protects the blood pressure circadian rhythm in diabetic mice[J]. Proc Natl Acad Sci USA, 2021, 118(25): e2015873118. doi: 10.1073/pnas.2015873118
    [25]
    HONMA S. Development of the mammalian circadian clock[J]. Eur J Neurosci, 2020, 51(1): 182-193. doi: 10.1111/ejn.14318
    [26]
    COSTELLO H M, GUMZ M L. Circadian rhythm, clock genes, and hypertension: recent advances in hypertension[J]. Hypertension, 2021, 78(5): 1185-1196. doi: 10.1161/HYPERTENSIONAHA.121.14519
    [27]
    YANG G, CHEN L, GRANT G R, et al. Timing of expression of the core clock gene bmal1 influences its effects on aging and survival[J]. Sci Transl Med, 2016, 8(324): 316-324.
    [28]
    HARFMANN B D, SCHRODER E A, KACHMAN M T, et al. Muscle-specific loss of bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis[J]. Skelet Muscle, 2016, 6: 12. doi: 10.1186/s13395-016-0082-x
    [29]
    AMARAL F G D, CIPOLLA-NETO J. A brief review about melatonin, a pineal hormone[J]. Arch Endocrinol Metab, 2018, 62(4): 472-479. doi: 10.20945/2359-3997000000066
    [30]
    CROWLEY S J, CAIN S W, BURNS A C, et al. Increased sensitivity of the circadian system to light in early/mid-puberty[J]. J Clin Endocrinol Metab, 2015, 100(11): 4067-4073. doi: 10.1210/jc.2015-2775
    [31]
    LIN L Z, ZENG X W, DEB B, et al. Outdoor light at night, overweight, and obesity in school-aged children and adolescents[J]. Environ Pollut, 2022, 305: 119306. doi: 10.1016/j.envpol.2022.119306
    [32]
    OVERBERG J, KALVERAM L, KELLER T, et al. Interactions between nocturnal melatonin secretion, metabolism, and sleeping behavior in adolescents with obesity[J]. Int J Obes (Lond), 2022, 46(5): 1051-1058. doi: 10.1038/s41366-022-01077-4
    [33]
    PAULIS L, SIMKO F. Blood pressure modulation and cardiovascular protection by melatonin: potential mechanisms behind[J]. Physiol Res, 2007, 56(6): 671-684.
    [34]
    AGIL A, NAVARRO-ALARCÓN M, RUIZ R, et al. Beneficial effects of melatonin on obesity and lipid profile in young zucker diabetic fatty rats[J]. J Pineal Res, 2011, 50(2): 207-212. doi: 10.1111/j.1600-079X.2010.00830.x
    [35]
    BOUZAS I C, CADER S A, LEÃO L, et al. Menstrual cycle alterations during adolescence: early expression of metabolic syndrome and polycystic ovary syndrome[J]. J Pediatr Adolesc Gynecol, 2014, 27(6): 335-341. doi: 10.1016/j.jpag.2014.01.002
    [36]
    PINOLA P, LASHEN H, BLOIGU A, et al. Menstrual disorders in adolescence: a marker for hyperandrogenaemia and increased metabolic risks in later life? Finnish general population-based birth cohort study[J]. Hum Reprod, 2012, 27(11): 3279-3286. doi: 10.1093/humrep/des309
    [37]
    GLUECK C J, WOO J G, KHOURY P R, et al. Adolescent oligomenorrhea (age 14-19) tracks into the third decade of life (age 20-28) and predicts increased cardiovascular risk factors and metabolic syndrome[J]. Metabolism, 2015, 64(4): 539-553. doi: 10.1016/j.metabol.2015.01.005
    [38]
    PRASHER D, GREENWAY S C, SING R B et al. The impact of epigenetics on cardiovascular disease[J]. Biochem Cell Biol, 2020, 98(1): 12-22. doi: 10.1139/bcb-2019-0045
    [39]
    AGBARIA S, HAIM A, FARES F, et al. Epigenetic modification in 4T1 mouse breast cancer model by artificial light at night and melatonin: the role of DNA methyltransferase[J]. Chronobiol Int, 2019, 36(5): 629-643. doi: 10.1080/07420528.2019.1574265
    [40]
    MADSEN A, HÖPPNER G, KRAUSE J, et al. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility[J]. Circulation, 2020, 142(16): 1562-1578. doi: 10.1161/CIRCULATIONAHA.119.044444
    [41]
    PAPAIT R, SERIO S, PAGIATAKIS C, et al. Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy[J]. Circulation, 2017, 136(13): 1233-1246. doi: 10.1161/CIRCULATIONAHA.117.028561
    [42]
    LENG Y, WU Y, LEI S Q, et al. Inhibition of HDAC6 activity alleviates myocardial ischemia/reperfusion injury in diabetic rats: potential role of peroxiredoxin 1 acetylation and redox regulation[J]. Oxid Med Cell Longev, 2018, 2018: 9494052.
    [43]
    WOJCIECHOWSKA A, BRANIEWSKA A, KOZAR-KAMINSKA K. MicroRNA in cardiovascular biology and disease[J]. Adv Clin Exp Med, 2017, 26(5): 865-874.
    [44]
    KOJIMA S, GREEN C B. Circadian genomics reveal a role for post-transcriptional regulation in mammals[J]. Biochemistry, 2015, 54(2): 124-133. doi: 10.1021/bi500707c
    [45]
    COON S L, MUNSON P J, CHERUKURI P F, et al. Circadian changes in long noncoding RNAs in the pineal gland[J]. Proc Natl Acad Sci, 2012, 109(33): 13319-13324. doi: 10.1073/pnas.1207748109
    [46]
    ROTTIERS V, NÄÄR A M. MicroRNAs in metabolism and metabolic disorders[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 239-250. doi: 10.1038/nrm3313
    [47]
    杨鑫, 胡炎伟. 长链非编码RNA在动脉粥样硬化发生发展中的作用机制及临床价值[J]. 中华检验医学杂志, 2023, 46(7): 741-747.

    YANG X, HU Y W. Mechanism and clinical value of long non-coding RNA in the development of atherosclerosis[J]. Chin J Lab Med, 2023, 46(7): 741-747. (in Chinese)
    [48]
    TAO W W, CHEN S Y, SHI G S, et al. SWItch/sucrose nonfermentable (SWI/SNF) complex subunit Baf60a integrates hepatic circadian clock and energy metabolism[J]. Hepatology, 2011, 54(4): 1410-1420. doi: 10.1002/hep.24514
    [49]
    CHEN S Y, DING Y, ZHANG Z, et al. Hyperlipidaemia impairs the circadian clock and physiological homeostasis of vascular smooth muscle cells via the suppression of Smarcd1[J]. J Pathol, 2014, 233(2): 159-169. doi: 10.1002/path.4338
    [50]
    CIPOLLA-NETO J, AMARAL F G, AFECHE S C, et al. Melatonin, energy metabolism, and obesity: a review[J]. J Pineal Res, 2014, 56(4): 371-381. doi: 10.1111/jpi.12137
    [51]
    BODEN G, RUIZ J, URBAIN J L, et al. Evidence for a circadian rhythm of insulin secretion[J]. Am J Physiol, 1996, 271(2 Pt 1): 246-252.
    [52]
    SCHMID S M, JAUCH-CHARA K, HALLSCHMID M, et al. Mild sleep restriction acutely reduces plasma glucagon levels in healthy men[J]. J Clin Endocrinol Metab, 2009, 94(12): 5169-5173. doi: 10.1210/jc.2009-0969
    [53]
    CASTANON-CERVANTES O, WU M, EHLEN J C, et al. Dysregulation of inflammatory responses by chronic circadian disruption[J]. J Immunol, 2010, 185(10): 5796-5805. doi: 10.4049/jimmunol.1001026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (41) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return