Volume 45 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
ZHANG Qin, LIU Xueting, ZHANG Kexin, TIAN Ye, HE Chunlei, WANG Yidi, XU Yujie, SHAN Shufang, WANG Xiaoyu, XIONG Jingyuan, CHENG Guo, HE Fang. Differences in gut microbiota among primary school students with different levels of sugar-sweetened beverage consumption[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(3): 335-340. doi: 10.16835/j.cnki.1000-9817.2024093
Citation: ZHANG Qin, LIU Xueting, ZHANG Kexin, TIAN Ye, HE Chunlei, WANG Yidi, XU Yujie, SHAN Shufang, WANG Xiaoyu, XIONG Jingyuan, CHENG Guo, HE Fang. Differences in gut microbiota among primary school students with different levels of sugar-sweetened beverage consumption[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(3): 335-340. doi: 10.16835/j.cnki.1000-9817.2024093

Differences in gut microbiota among primary school students with different levels of sugar-sweetened beverage consumption

doi: 10.16835/j.cnki.1000-9817.2024093
  • Received Date: 2023-11-02
  • Rev Recd Date: 2024-01-11
  • Available Online: 2024-03-29
  • Publish Date: 2024-03-25
  •   Objective  To explore the differences in the gut microbiota of primary school students with different levels of sugar-sweetened beverage intake, so as to provide scientific evidence for better identification of health risks in children and the development of targeted health policies.  Methods  In June 2022, a total of 192 healthy primary school students from Chengdu were selected using a stratified cluster random sampling method. The sugar-sweetened beverage intake was assessed through a dietary frequency questionnaire. Based on the median daily sugar-sweetened beverage intake, primary school students were categorized into a low-intake group (n=96) and a high-intake group (n=96). The gut microbiota in fresh fecal samples from the two groups of primary school students was analyzed using 16S rRNA high-throughput sequencing, and the diversity and community structure differences in the gut microbiota were compared.  Results  Children in the low-intake group had a sugar-sweetened beverage intake of (21.3±1.6) mL/d, while the high-intake group had an intake of (269.6±37.3) mL/d. Diversity analysis results showed that there were no statistically significant differences between the low-intake and the high-intake group in terms of α diversity metrics: Observed_otus index [298.50 (259.75, 342.25), 305.50 (244.25, 367.75)], Goods_coverage index [1.00 (1.00, 1.00), 1.00 (1.00, 1.00)], Chao index [304.18 (260.75, 348.78), 305.88 (245.68, 370.88)], Shannon index [5.88 (5.29, 6.45), 5.71 (4.89, 6.28)] and Simpson index [0.95 (0.91, 0.97), 0.94 (0.88, 0.97)] (Z=-0.64, -0.76, -0.54, -1.76, -1.67, P>0.05). Furthermore, no statistically significant difference was observed in β diversity between the two groups (R2=0.006, P>0.05). At the genus level, the abundance of Blautia [0.033 (0.018, 0.055)] and Fusicatenibacter [0.009 (0.005, 0.015)] were higher in the low-intake group compared to the high-intake group [0.024 (0.013, 0.041), 0.006 (0.003, 0.011)]and differences were statistically significant (Z=-2.52, -2.81, P < 0.05). LEfSe analysis highlighted intergroup differences primarily in Blautia, Fusicatenibacter and Sarcina(LDA=3.56, 3.12, 3.53, P < 0.05).  Conclusions  There is no significant difference in the diversity and overall structure of the gut microbiota in primary school students with different levels of sugar-sweetened beverage intake. However, there are species variations at the genus level. The information can serve as a scientific basis for identifying health risks in primary school students and formulating targeted health strategies.
  • loading
  • [1]
    谢梦, 于冬梅, 赵丽云. 含糖饮料与儿童青少年超重肥胖关系[J]. 卫生研究, 2018, 47(5): 862-865, 870.

    XIE M, YU D M, ZHAO L Y. The relationship between sugary drinks and childhood adolescent overweight and obesity[J]. J Hyg Res, 2018, 47(5): 862-865, 870. (in Chinese)
    [2]
    马冠生, 郑梦琪. 迫切需要控制儿童含糖饮料消费[J]. 中国学校卫生, 2017, 38(5): 641-643. doi: 10.16835/j.cnki.1000-9817.2017.05.001

    MA G S, ZHENG M Q. Urgent need to control children's consumption of sugary drinks[J]. Chin J Sch Health, 2017, 38(5): 641-643. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2017.05.001
    [3]
    RAMPELLI S, GUENTHER K, TURRONI S, et al. Pre-obese children's dysbiotic gut microbiome and unhealthy diets may predict the development of obesity[J]. Commun Biol, 2018, 1: 222. doi: 10.1038/s42003-018-0221-5
    [4]
    JASTROCH M, USSAR S, KEIPERT S. Gut microbes controlling blood sugar: no fire required![J]. Cell Metab, 2020, 31(3): 443-444. doi: 10.1016/j.cmet.2020.02.007
    [5]
    TARASIUK A, FICHNA J. Gut microbiota: what is its place in pharmacology?[J]. Expert Rev Clin Pharmacol, 2019, 12(10): 921-930. doi: 10.1080/17512433.2019.1670058
    [6]
    MOSZAK M, SZULIńSKA M, BOGDAńSKI P. You are what you eat—the relationship between diet, microbiota, and metabolic disorders: a review[J]. Nutrients, 2020, 12(4): 1096. doi: 10.3390/nu12041096
    [7]
    RAMNE S, BRUNKWALL L, ERICSON U, et al. Gut microbiota composition in relation to intake of added sugar, sugar-sweetened beverages and artificially sweetened beverages in the malm offspring study[J]. Eur J Nutr, 2021, 60(4): 2087-2097. doi: 10.1007/s00394-020-02392-0
    [8]
    BEARDS E, TUOHY K, GIBSON G. A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition[J]. Br J Nutr, 2010, 104(5): 701-708. doi: 10.1017/S0007114510001078
    [9]
    ZHANG S, DANG Y. Roles of gut microbiota and metabolites in overweight and obesity of children[J]. Front Endocrinol (Lausanne), 2022, 13: 994930. doi: 10.3389/fendo.2022.994930
    [10]
    DERRIEN M, ALVAREZ A S, DE VOS W M. The gut microbiota in the first decade of life[J]. Trends Microbiol, 2019, 27(12): 997-1010. doi: 10.1016/j.tim.2019.08.001
    [11]
    林琼希, 伦静娴, 张吉敏, 等. 学龄期儿童肉类食品摄入模式对其肠道菌群结构的影响[J]. 南方医科大学学报, 2021, 41(12): 1801-1808. doi: 10.12122/j.issn.1673-4254.2021.12.07

    LIN Q X, LUN J X, ZHANG J M, et al. Gut microbiome composition in pre-adolescentchildren with different meat consumption patterns[J]. J South Med Univ, 2021, 41(12): 1801-1808. (in Chinese) doi: 10.12122/j.issn.1673-4254.2021.12.07
    [12]
    VALENTE H, TEIXEIRA V, PADRÃO P, et al. Sugar-sweetened beverage intake and overweight in children from a Mediterranean country[J]. Public Health Nutr, 2011, 14(1): 127-132. doi: 10.1017/S1368980010002533
    [13]
    史欣然, 安美静, 陈天娇, 等. 饮奶行为在家庭社会经济状况与儿童青少年体重指数间的中介作用[J]. 北京大学学报(医学版), 2021, 53(2): 308-313.

    SHI X R, AN M J, CHEN T J, et al. Mediating effect of milk intake between family socioeconomic status and body mass index of children and adolescents[J]. J Peking Univ(Health Sci), 2021, 53(2): 308-313. (in Chinese)
    [14]
    李辉, 季成叶, 宗心南, 等. 中国0~18岁儿童、青少年体块指数的生长曲线[J]. 中华儿科杂志, 2009, 47(7): 493-498. doi: 10.3760/cma.j.issn.0578-1310.2009.07.004

    LI H, JI C Y, ZONG X N, et al. Body mass index growth curves for Chinese children and adolescents aged 0 to 18 years[J]. Chin J Pediatr, 2009, 47(7): 493-498. (in Chinese) doi: 10.3760/cma.j.issn.0578-1310.2009.07.004
    [15]
    段若男, 刘言, 薛红妹, 等. 成都市儿童青少年膳食质量评价及其与超重/肥胖的关系[J]. 中华流行病学杂志, 2014, 35(9): 994-997.

    DUAN R N, LIU Y, XUE H M, et al. Cross-sectional association between overall diet quality and overweight/obesity among children and adolescents in Chengdu[J]. Chin J Epidemiol, 2014, 35(9): 994-997. (in Chinese)
    [16]
    杨月欣, 王光亚, 潘兴昌. 中国食物成分表[M]. 北京: 北京大学医学出版社, 2009.

    YANG Y X, WANG G Y, PAN X C. China food composition tables[M]. Beijing: Peking University Medical Press, 2009. (in Chinese)
    [17]
    潘峰, 栾德春, 张彤薇, 等. 我国3岁及以上城市居民含糖饮料消费状况及其游离糖摄入评估[J]. 中国食品卫生杂志, 2022, 34(1): 126-130.

    PAN F, LUAN D C, ZHANG T W, et al. Assessment of sugar-sweetened beverages consumption and free sugar intake among urban residents aged 3 and above in China[J]. Chin J Food Hyg, 2022, 34(1): 126-130. (in Chinese)
    [18]
    GAN Q, XU P, YANG T, et al. Sugar-sweetened beverage consumption status and its association with childhood obesity among Chinese children aged 6-17 years[J]. Nutrients, 2021, 13(7): 2211. doi: 10.3390/nu13072211
    [19]
    LEUNG C W, DIMATTEO S G, GOSLINER W A, et al. Sugar-sweetened beverage and water intake in relation to diet quality in U.S. children[J]. Am J Prev Med, 2018, 54(3): 394-402. doi: 10.1016/j.amepre.2017.11.005
    [20]
    VAN LIPPEVELDE W, TE VELDE S J, VERLOIGNE M, et al. Associations between home- and family-related factors and fruit juice and soft drink intake among 10- to 12-year old children. The ENERGY project[J]. Appetite, 2013, 61(1): 59-65.
    [21]
    MORAN A J, SUBRAMANIAN S V, RIMM E B, et al. Characteristics associated with household purchases of sugar-sweetened beverages in US restaurants[J]. Obesity (Silver Spring), 2019, 27(2): 339-348. doi: 10.1002/oby.22380
    [22]
    KEMP K M, ORIHUELA C A, MORROW C D, et al. Associations between dietary habits, sociodemographics, and gut microbial composition in adolescents[J]. Br J Nutr, 2024, 131(5): 809-820. doi: 10.1017/S0007114523002271
    [23]
    SOPHA S C, MANEJWALA A, BOUTROS C N. Sarcina, a new threat in the bariatric era[J]. Hum Pathol, 2015, 46(9): 1405-1407. doi: 10.1016/j.humpath.2015.05.021
    [24]
    李蔚, 张强, 瞿嘉豪, 等. 大熊猫肠道菌群年龄演替规律分析[J]. 畜牧兽医学报, 2023, 54(6): 2619-2630.

    LI W, ZHANG Q, QU J H, et al. Analysis on the age succession of intestinal flora of giant panda[J]. Acta Vet Zootec Sin, 2023, 54(6): 2619-2630. (in Chinese)
    [25]
    RINNINELLA E, CINTONI M, RAOUL P, et al. Food components and dietary habits: keys for a healthy gut microbiota composition[J]. Nutrients, 2019, 11(10): 2393. doi: 10.3390/nu11102393
    [26]
    GUTIÉRREZ-REPISO C, MORENO-INDIAS I, DE HOLLANDA A, et al. Gut microbiota specific signatures are related to the successful rate of bariatric surgery[J]. Am J Transl Res, 2019, 11(2): 942-952.
    [27]
    FENNEMA D, PHILLIPS I R, SHEPHARD E A. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis implicated in health and disease[J]. Drug Metab Dispos, 2016, 44(11): 1839-1850. doi: 10.1124/dmd.116.070615
    [28]
    蒋露芳, 王莹莹, 彭慧, 等. 学龄儿童肥胖与肠道菌群多样性及菌属丰度的关联研究[J]. 中华流行病学杂志, 2022, 43(2): 260-268. doi: 10.3760/cma.j.cn112338-20210617-00478

    JIANG L F, WANG Y Y, PENG H, et al. Association between obesity with the diversity and genus of gut microbiota in school-aged children[J]. Chin J Epidemiol, 2022, 43(2): 260-268. (in Chinese) doi: 10.3760/cma.j.cn112338-20210617-00478
    [29]
    MACFARLANE G T, CUMMINGS J H. Probiotics and prebiotics: can regulating the activities of intestinal bacteria benefit health?[J]. West J Med, 1999, 171(3): 187-191.
    [30]
    LIU X, MAO B, GU J, et al. Blautia-a new functional genus with potential probiotic properties?[J]. Gut Microbes, 2021, 13(1): 1-21.
    [31]
    LIU C, LI J, ZHANG Y, et al. Influence of glucose fermentation on CO2 assimilation to acetate in homoacetogen Blautia coccoides GA-1[J]. J Ind Microbiol Biotechnol, 2015, 42(9): 1217-1224. doi: 10.1007/s10295-015-1646-1
    [32]
    KIMURA I, INOUE D, MAEDA T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)[J]. Proc Natl Acad Sci USA, 2011, 108(19): 8030-8035. doi: 10.1073/pnas.1016088108
    [33]
    KIMURA I, OZAWA K, INOUE D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J]. Nat Commun, 2013, 4: 1829. doi: 10.1038/ncomms2852
    [34]
    OZATO N, SAITO S, YAMAGUCHI T, et al. Blautia genus associated with visceral fat accumulation in adults 20-76 years of age[J]. NPJ Biofilms Microb, 2019, 5(1): 28. doi: 10.1038/s41522-019-0101-x
    [35]
    JIN M, KALAINY S, BASKOTA N, et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids[J]. Liver Int, 2019, 39(8): 1437-1447. doi: 10.1111/liv.14106
    [36]
    GRYAZNOVA M, SMIRNOVA Y, BURAKOVA I, et al. Changes in the human gut microbiome caused by the short-term impact of lactic acid bacteria consumption in healthy people[J]. Probiotics Antimicrob Proteins, 2023. DOI: 10.1007/s12602-023-10111-4.
    [37]
    杨启航, 蒲锐, 陈子扬, 等. 肠道菌群代谢物在肥胖调控中的作用与机制[J]. 中国组织工程研究, 2024, 28(2): 308-314. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202402023.htm

    YANG Q H, PU R, CHEN Z Y, et al. Role and mechanism of intestinal flora metabolites in obesity regulation[J]. Chin J Tissue Engineer Res, 2024, 28(2): 308-314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202402023.htm
    [38]
    沈丽萍, 汪正园, 史泽环, 等. 不同含糖饮料摄入频率儿童青少年体格发育和糖脂代谢指标的差异[J]. 环境与职业医学, 2023, 40(7): 761-768. https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX202307005.htm

    SHEN L P, WANG Z Y, SHI Z H, et al. Associations of sugar-sweetened beverages intake frequency with physical growth and glucol-ipid metabolism among children and adolescents[J]. J Environ Occup Med, 2023, 40(7): 761-768. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX202307005.htm
    [39]
    徐玉祥, 江伟康, 赵莉, 等. 含糖饮料摄入模式与儿童肥胖关联的纵向研究[J]. 中国学校卫生, 2021, 42(4): 506-509. doi: 10.16835/j.cnki.1000-9817.2021.04.007

    XU Y X, JIANG W K, ZHAO L, et al. A cohort study on the association between sugar-sweetened beverage intake and childhood obesity using a group-based trajectory model[J]. Chin J Sch Health, 2021, 42(4): 506-509. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2021.04.007
    [40]
    赵莉, 黎隐豪, 肖成汉, 等. 含糖饮料与儿童肥胖的关系及其防控政策研究进展[J]. 中国学校卫生, 2020, 41(3): 468-470. doi: 10.16835/j.cnki.1000-9817.2020.03.043

    ZHAO L, LI Y H, XIAO C H, et al. The relationship between sugary drinks and childhood obesity and advances in research and policies for prevention and control[J]. Chin J Sch Health, 2020, 41(3): 468-470. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2020.03.043
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(4)

    Article Metrics

    Article views (125) PDF downloads(34) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return