Volume 45 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
GAO Zhenshan, TAO Fangbiao. Application of a polygenic risk score in the early prediction of myopia in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(1): 148-152. doi: 10.16835/j.cnki.1000-9817.2024012
Citation: GAO Zhenshan, TAO Fangbiao. Application of a polygenic risk score in the early prediction of myopia in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(1): 148-152. doi: 10.16835/j.cnki.1000-9817.2024012

Application of a polygenic risk score in the early prediction of myopia in children and adolescents

doi: 10.16835/j.cnki.1000-9817.2024012
  • Received Date: 2023-09-19
  • Rev Recd Date: 2023-11-03
  • Available Online: 2024-02-01
  • Publish Date: 2024-01-25
  • Myopia has become a major public health issue of global concern. Scientific and effective myopia prediction models can help identify high-risk groups for myopia, thereby achieving precise prevention. With the rapid development of genome-wide association studies and the establishment of large-scale prospective population cohorts, the polygenic risk score (PRS) model has been used to predict myopia phenotypes, advancing the myopia prediction window and thus predicting high myopia risk for early screening and intervention for at-risk groups. The review aims to systematically elaborate the identification and verification of myopia genes in recent years, briefly describe the practice and effectiveness evaluation of the PRS model in myopia prevention research at home and abroad, reveal the application value in myopia prediction research, and emphasize the relationship between the PRS prediction model and outdoor activities. Close eye use and other preventive measures are of great significance to promote the precise prevention of myopia in children and adolescents.
  • loading
  • [1]
    BAIRD P N, SAW S M, LANCA C, et al. Myopia[J]. Nat Rev Dis Prim, 2020, 6(1): 99. doi: 10.1038/s41572-020-00231-4
    [2]
    HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi: 10.1016/j.ophtha.2016.01.006
    [3]
    陶芳标, 潘臣炜, 伍晓艳, 等. 户外活动防控儿童青少年近视专家推荐[J]. 中国学校卫生, 2019, 40(5): 641-643. doi: 10.16835/j.cnki.1000-9817.2019.05.001

    TAO F B, PAN C W, WU X Y, et al. Expert recommendation for outdoors activities as myopia prevention and control in children and adolescents[J]. Chin J Sch Health, 2019, 40(5): 641-643. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2019.05.001
    [4]
    中华人民共和国国家卫生健康委宣传司. 国家卫生健康委员会2021年7月13日新闻发布会文字实录(有关2020年全国儿童青少年近视)[EB/OL]. (2021-07-13)[2023-10-19]. http://www.nhc.gov.cn/xcs/s3574/202107/2fef24a3b77246fc9fb36dc8943af700.shtml.

    Department of Publicity, National Health Commission of the PRC. Transcript of the press conference of the National Health Commission on 13 July 2021(on myopia among children and adolescents in China in 2020)[EB/OL]. (2021-07-13)[2023-10-19]. http://www.nhc.gov.cn/xcs/s3574/202107/2fef24a3b77246fc9fb36dc8943af700.shtml. (in Chinese)
    [5]
    中国学生营养与健康促进会视力健康分会, 中华预防医学会公共卫生眼科分会. 中国儿童青少年近视防控公共卫生综合干预行动专家共识[J]. 中华医学杂志, 2023, 103(38): 3002-3009.

    Chinese Students' Nutrition and Health Promotion Association Visual Health Branch, Chinese Preventive Medicine Association Public Health Ophthalmology Branch. Chinese expert consensus on comprehensive public health intervention for myopia prevention and control in children and adolescents[J]. Natl Med J China, 2023, 103(38): 3002-3009. (in Chinese)
    [6]
    HAN X, LIU C, CHEN Y, et al. Myopia prediction: a systematic review[J]. Eye (Lond), 2022, 36(5): 921-929. doi: 10.1038/s41433-021-01805-6
    [7]
    POZARICKIJ A, WILLIAMS C, HYSI P G, et al. Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development[J]. Commun Biol, 2019, 2: 167. doi: 10.1038/s42003-019-0387-5
    [8]
    PAGET S, JULIA S, VITEZICA Z G, et al. Linkage analysis of high myopia susceptibility locus in 26 families[J]. Mol Vis, 2008, 14: 2566-2574.
    [9]
    NAKANISHI H, YAMADA R, GOTOH N, et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1[J]. PLoS Genet, 2009, 5(9): e1000660. doi: 10.1371/journal.pgen.1000660
    [10]
    SOLOUKI A M, VERHOEVEN V J, VAN DUIJN C M, et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14[J]. Nat Genet, 2010, 42(10): 897-901. doi: 10.1038/ng.663
    [11]
    HYSI P G, YOUNG T L, MACKEY D A, et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25[J]. Nat Genet, 2010, 42(10): 902-905. doi: 10.1038/ng.664
    [12]
    KANTOR O, BENKO Z, ENZSOLY A, et al. Characterization of connexin36 gap junctions in the human outer retina[J]. Brain Struct Funct, 2016, 221(6): 2963-2984. doi: 10.1007/s00429-015-1082-z
    [13]
    GONG Q, JANOWSKI M, XIE M, et al. RASGRF1 mRNA expression in myopic eyes of guinea pigs[J]. Clin Exp Optom, 2017, 100(2): 174-178. doi: 10.1111/cxo.12476
    [14]
    LI Y J, GOH L, KHOR C C, et al. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese[J]. Ophthalmology, 2011, 118(2): 368-375. doi: 10.1016/j.ophtha.2010.06.016
    [15]
    SHI Y, QU J, ZHANG D, et al. Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population[J]. Am J Hum Genet, 2011, 88(6): 805-813. doi: 10.1016/j.ajhg.2011.04.022
    [16]
    DUPARC R, BOUTEMMINE D, CHAMPAGNE M, et al. PAX6 is required for delta-catenin/neurojugin expression during retinal, cerebellar and cortical development in mice[J]. Dev Biol, 2006, 300(2): 647-655. doi: 10.1016/j.ydbio.2006.07.045
    [17]
    PAFFENHOLZ R, KUHN C, GRUND C, et al. The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction[J]. Exp Cell Res, 1999, 250(2): 452-464. doi: 10.1006/excr.1999.4534
    [18]
    FAN Q, BARATHI V A, CHENG C Y, et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia[J]. PLoS Genet, 2012, 8(6): e1002753. doi: 10.1371/journal.pgen.1002753
    [19]
    CHENG C Y, SCHACHE M, IKRAM M K, et al. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error[J]. Am J Hum Genet, 2013, 93(2): 264-277. doi: 10.1016/j.ajhg.2013.06.016
    [20]
    VERHOEVEN V J, HYSI P G, WOJCIECHOWSKI R, et al. Genome-wide Meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia[J]. Nat Genet, 2013, 45(3): 314-318. doi: 10.1038/ng.2554
    [21]
    KIEFER A K, TUNG J Y, DO C B, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia[J]. PLoS Genet, 2013, 9(2): e1003299. doi: 10.1371/journal.pgen.1003299
    [22]
    KEMPEN J H, MITCHELL P, LEE K E, et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia[J]. Arch Ophthalmol, 2004, 122(4): 495-505. doi: 10.1001/archopht.122.4.495
    [23]
    TEDJA M S, WOJCIECHOWSKI R, HYSI P G, et al. Genome-wide association Meta-analysis highlights light-induced signaling as a driver for refractive error[J]. Nat Genet, 2018, 50(6): 834-848. doi: 10.1038/s41588-018-0127-7
    [24]
    HYSI P G, CHOQUET H, KHAWAJA A P, et al. Meta-analysis of 542934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia[J]. Nat Genet, 2020, 52(4): 401-407. doi: 10.1038/s41588-020-0599-0
    [25]
    FAN Q, POZARICKIJ A, TAN N Y Q, et al. Genome-wide association Meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error[J]. Commun Biol, 2020, 3(1): 133. doi: 10.1038/s42003-020-0802-y
    [26]
    LIU J, ZHANG R, SUN L, et al. Genotype-phenotype correlation and interaction of 4q25, 15q14 and MIPEP variants with myopia in southern Chinese population[J]. Br J Ophthalmol, 2021, 105(6): 869-877. doi: 10.1136/bjophthalmol-2019-314782
    [27]
    LI F F, LU S Y, TANG S M, et al. Genetic associations of myopia severities and endophenotypes in children[J]. Br J Ophthalmol, 2021, 105(8): 1178-1183. doi: 10.1136/bjophthalmol-2020-316728
    [28]
    TANG S M, LI F F, LU S Y, et al. Association of the ZC3H11B, ZFHX1B and SNTB1 genes with myopia of different severities[J]. Br J Ophthalmol, 2020, 104(10): 1472-1476. doi: 10.1136/bjophthalmol-2019-314203
    [29]
    YUAN X L, ZHANG R, ZHENG Y, et al. Corneal curvature-associated MTOR variant differentiates mild myopia from high myopia in Han Chinese population[J]. Ophthalmic Genet, 2021, 42(4): 446-457. doi: 10.1080/13816810.2021.1923035
    [30]
    LI X, LONG J, LIU Y, et al. Association of MTOR and PDGFRA gene polymorphisms with different degrees of myopia severity[J]. Exp Eye Res, 2022, 217: 108962. doi: 10.1016/j.exer.2022.108962
    [31]
    MIYAKE M, YAMASHIRO K, TABARA Y, et al. Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia[J]. Nat Commun, 2015, 6: 6689. doi: 10.1038/ncomms7689
    [32]
    LU S Y, TANG S M, LI F F, et al. Association of WNT7B and RSPO1 with axial length in school children[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 11. doi: 10.1167/iovs.61.10.11
    [33]
    HAMMOND C J, ANDREW T, MAK Y T, et al. A susceptibility locus for myopia in the normal population is linked to the PAX66 gene region on chromosome 11: a genomewide scan of dizygotic twins[J]. Am J Hum Genet, 2004, 75(2): 294-304. doi: 10.1086/423148
    [34]
    HAN W, LEUNG K H, FUNG W Y, et al. Association of PAX6 polymorphisms with high myopia in Han Chinese nuclear families[J]. Invest Ophthalmol Vis Sci, 2009, 50(1): 47-56. doi: 10.1167/iovs.07-0813
    [35]
    LIANG C L, HSI E, CHEN K C, et al. A functional polymorphism at 3'UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3500-3505. doi: 10.1167/iovs.10-5859
    [36]
    JIANG B, YAP M K, LEUNG K H, et al. PAX6 haplotypes are associated with high myopia in Han Chinese[J]. PLoS One, 2011, 6(5): e19587. doi: 10.1371/journal.pone.0019587
    [37]
    TANG S M, RONG S S, YOUNG A L, et al. PAX6 gene associated with high myopia: a Meta-analysis[J]. Optom Vis Sci, 2014, 91(4): 419-429. doi: 10.1097/OPX.0000000000000224
    [38]
    MUTTI D O, COOPER M E, O'BRIEN S, et al. Candidate gene and locus analysis of myopia[J]. Mol Vis, 2007, 13: 1012-1019.
    [39]
    SHI Y, GONG B, CHEN L, et al. A genome-wide Meta-analysis identifies two novel loci associated with high myopia in the Han Chinese population[J]. Hum Mol Genet, 2013, 22(11): 2325-2333. doi: 10.1093/hmg/ddt066
    [40]
    KHOR C C, MIYAKE M, CHEN L J, et al. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia[J]. Hum Mol Genet, 2013, 22(25): 5288-5294. doi: 10.1093/hmg/ddt385
    [41]
    LI J, JIAO X, ZHANG Q, et al. Association and interaction of myopia with SNP markers rs13382811 and rs6469937 at ZFHX1B and SNTB1 in Han Chinese and European populations[J]. Mol Vis, 2017, 23: 588-604.
    [42]
    ZHAO F, LI Q, CHEN W, et al. Dysfunction of VIPR2 leads to myopia in humans and mice[J]. Med Genet, 2022, 59(1): 88-100. doi: 10.1136/jmedgenet-2020-107220
    [43]
    YU Z, ZHOU J, CHEN X, et al. Polymorphisms in the CTNND2 gene and 11q24.1 genomic region are associated with pathological myopia in a Chinese population[J]. Ophthalmologica, 2012, 228(2): 123-129. doi: 10.1159/000338188
    [44]
    LI Y J, GOH L, KHOR C C, et al. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese[J]. Ophthalmology, 2011, 118(2): 368-375. doi: 10.1016/j.ophtha.2010.06.016
    [45]
    LU B, JIANG D, WANG P, et al. Replication study supports CTNND2 as a susceptibility gene for high myopia[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 8258-8261. doi: 10.1167/iovs.11-7914
    [46]
    HOSODA Y, YOSHIKAWA M, MIYAKE M, et al. CCDC102B confers risk of low vision and blindness in high myopia[J]. Nat Commun, 2018, 9(1): 1782. doi: 10.1038/s41467-018-03649-3
    [47]
    BILBAO-MALAVÉ V, RECALDE S, BEZUNARTEA J, et al. Genetic and environmental factors related to the development of myopic maculopathy in Spanish patients[J]. PLoS One, 2020, 15(7): e0236071. doi: 10.1371/journal.pone.0236071
    [48]
    CHATTERJEE N, SHI J, GARCÍA-CLOSAS M. Developing and evaluating polygenic risk prediction models for stratified disease prevention[J]. Nat Rev Genet, 2016, 17(7): 392-406. doi: 10.1038/nrg.2016.27
    [49]
    WAND H, LAMBERT S A, TAMBURRO C, et al. Improving reporting standards for polygenic scores in risk prediction studies[J]. Nature, 2021, 591(7849): 211-219. doi: 10.1038/s41586-021-03243-6
    [50]
    CHEN L J, LI F F, LU S Y, et al. Association of polymorphisms in ZFHX1B, KCNQ5 and GJD2 with myopia progression and polygenic risk prediction in children[J]. Br J Ophthalmol, 2021, 105(12): 1751-1757. doi: 10.1136/bjophthalmol-2020-318708
    [51]
    GHORBANI MOJARRAD N, PLOTNIKOV D, WILLIAMS C, et al. Association between polygenic risk score and risk of myopia[J]. JAMA Ophthalmol, 2020, 138(1): 7-13. doi: 10.1001/jamaophthalmol.2019.4421
    [52]
    ENTHOVEN C A, TIDEMAN J W L, POLLING J R, et al. Interaction between lifestyle and genetic susceptibility in myopia: the generation R study[J]. Eur J Epidemiol, 2019, 34(8): 777-784. doi: 10.1007/s10654-019-00512-7
    [53]
    LANCA C, KASSAM I, PATASOVA K, et al. New Polygenic risk score to predict high myopia in singapore Chinese children[J]. Transl Vis Sci Technol, 2021, 10(8): 26. doi: 10.1167/tvst.10.8.26
    [54]
    GHORBANI MOJARRAD N, WILLIAMS C, GUGGENHEIM J A. A genetic risk score and number of myopic parents independently predict myopia[J]. Ophthalmic Physiol Opt, 2018, 38(5): 492-502. doi: 10.1111/opo.12579
    [55]
    ZADNIK K, SINNOTT L T, COTTER S A, et al. Prediction of juvenile-onset myopia[J]. JAMA Ophthalmol, 2015, 133(6): 683-689. doi: 10.1001/jamaophthalmol.2015.0471
    [56]
    CHEN Y, HAN X, GUO X, et al. Contribution of genome-wide significant single nucleotide polymorphisms in myopia prediction: findings from a 10-year cohort of Chinese twin children[J]. Ophthalmology, 2019, 126(12): 1607-1614. doi: 10.1016/j.ophtha.2019.06.026
    [57]
    Polygenic Risk Score Task Force of the International Common Disease Alliance. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps[J]. Nat Med, 2021, 27(11): 1876-1884. doi: 10.1038/s41591-021-01549-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads(42) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return