Volume 42 Issue 5
May  2021
Turn off MathJax
Article Contents
SHI Mengmeng, LIU Li, LI Xuesi, ZHAI Lingling. Research progress of the role of microRNAs in puberty initiation[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2021, 42(5): 788-791. doi: 10.16835/j.cnki.1000-9817.2021.05.035
Citation: SHI Mengmeng, LIU Li, LI Xuesi, ZHAI Lingling. Research progress of the role of microRNAs in puberty initiation[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2021, 42(5): 788-791. doi: 10.16835/j.cnki.1000-9817.2021.05.035

Research progress of the role of microRNAs in puberty initiation

doi: 10.16835/j.cnki.1000-9817.2021.05.035
  • Received Date: 2020-08-13
  • Rev Recd Date: 2020-09-04
  • Available Online: 2021-05-20
  • Publish Date: 2021-05-25
  • MiRNAs are a type of single-stranded, endogenous, non-coding small RNAs, which can regulate the post-transcriptional expression of genes and a variety of biological functions. Puberty development involves a complex regulatory network, among which the the hypothalamic-pituitary-gonad axis may play the key role. Studies have found that there was a relationship between the miRNAs and puberty development. The absence and abnormal expression of miRNAs can affect the initiation of puberty. But the mechanism is not clear. It may be related to the secretion of GnRH in the hypothalamus. This article mainly introduced several miRNAs which were currently closely related to the initiation of puberty, and reviewed their role and possible mechanisms in the initiation of puberty.
  • loading
  • [1]
    张谊, 张燕. miRNA与精子发生发育及精液质量关系的研究进展[J]. 黑龙江畜牧兽医, 2016, 15: 63-65. DOI: 10.13881/j.cnki.hljxmsy.2016.1365.

    ZHANG Y, ZHANG Y. Research progress of the relationship between miRNA and spermatogenesis and semen quality[J]. Heilongjiang Ani Sci Veter Med, 2016, 15: 63-65. DOI: 10.13881/j.cnki.hljxmsy.2016.1365.
    [2]
    OJEDA S R, LOMNICZI A, SANDAU U, et al. New concepts on the control of the onset of puberty[J]. Endocr Dev, 2010, 17: 44-51. DOI: 10.11591000262527.
    [3]
    PLANT T M. Neuroendocrine control of the onset of puberty[J]. Front Neuroendocrinol, 2015, 38: 73-88. DOI: 10.1016/j.yfrne.2015.04.002.
    [4]
    LOMNICZI A, WRIGHT H, OJEDA S R. Epigenetic regulation of female puberty[J]. Front Neuroendocrinol, 2015, 36: 90-107. DOI: 10.1016/j.yfrne.2014.08.003
    [5]
    CHEKULAEVA M, FILIPOWICZ W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells[J]. Curr Opin Cell Biol, 2009, 21(3): 452-460. doi: 10.1016/j.ceb.2009.04.009
    [6]
    LYNN F C. Meta-regulation: microRNA regulation of glucose and lipid metabolism[J]. Trends Endocrinol Metab, 2009, 20(9): 452-459. doi: 10.1016/j.tem.2009.05.007
    [7]
    ELKS C E, PERRY J R, SULEM P, et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies[J]. Nat Genet, 2010, 42(12): 1077-1085. doi: 10.1038/ng.714
    [8]
    MESSINA A, LANGLET F, CHACHLAKI K, et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty[J]. Nat Neurosci, 2016, 19(6): 835-844. doi: 10.1038/nn.4298
    [9]
    WANG H, GRAHAM I, HASTINGS R, et al. Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects[J]. J Biol Chem, 2015, 290(5): 2699-2714. doi: 10.1074/jbc.M114.621565
    [10]
    MAO L, LIU S, HU L, et al. MiR-30 Family: a promising regulator in development and disease[J]. Biomed Res Int, 2018, 2018: 9623412. DOI: 10.1155/201819623412.
    [11]
    MADISON-VILLAR M J, MICHALAK P. Misexpression of testicular microRNA in sterile Xenopus hybrids points to tetrapod-specific microRNAs associated with male fertility[J]. J Mol Evol, 2011, 73(5/6): 316-324. http://www.ncbi.nlm.nih.gov/pubmed/22207500
    [12]
    FISCHER S, BUCK T, WAGNER A, et al. A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells[J]. Biotechnol J, 2014, 9(10): 1279-1292. doi: 10.1002/biot.201400306
    [13]
    FISCHER S, MATHIAS S, SCHAZ S, et al. Enhanced protein production by microRNA-30 family in CHO cells is mediated by the modulation of the ubiquitin pathway[J]. J Biotechnol, 2015, 212: 32-43. DOI: 10.1016/j.jbiotec.2015.08.002.
    [14]
    MA H, HOSTUTTLER M, WEI H, et al. Characterization of the rainbow trout egg microRNA transcriptome[J]. PLoS One, 2012, 7(6): e39649. doi: 10.1371/journal.pone.0039649
    [15]
    ABREU A P, DAUBER A, MACEDO D B, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3[J]. N Engl J Med, 2013, 368(26): 2467-2475. doi: 10.1056/NEJMoa1302160
    [16]
    ABREU A P, MACEDO D B, BRITO V N, et al. A new pathway in the control of the initiation of puberty: the MKRN3 gene[J]. J Mol Endocrinol, 2015, 54(3): R131-R139. doi: 10.1530/JME-14-0315
    [17]
    HAGEN C P, SRENSEN K, MIERITZ M G, et al. Circulating MKRN3 levels decline prior to pubertal onset and through puberty: a longitudinal study of healthy girls[J]. J Clin Endocrinol Metab, 2015, 100(5): 1920-1926. doi: 10.1210/jc.2014-4462
    [18]
    BUSCH A S, HAGEN C P, ALMSTRUP K, et al. Circulating MKRN3 Levels Decline During Puberty in Healthy Boys[J]. J Clin Endocrinol Metab, 2016, 101(6): 2588-2593. doi: 10.1210/jc.2016-1488
    [19]
    LIU H, KONG X, CHEN F. MKRN3 functions as a novel ubiquitin E3 ligase to inhibit Nptx1 during puberty initiation[J]. Oncotarget, 2017, 8(49): 85102-85109. doi: 10.18632/oncotarget.19347
    [20]
    JONG M T, CAREY A H, CALDWELL K A, et al. Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region[J]. Hum Mol Genet, 1999, 8(5): 795-803. doi: 10.1093/hmg/8.5.795
    [21]
    ABREU A P, KAISER U B. Pubertal development and regulation[J]. Lancet Diab Endocrinol, 2016, 4(3): 254-264. doi: 10.1016/S2213-8587(15)00418-0
    [22]
    XU Y, SUN J Y, JIN Y F, et al. PCAT6 participates in the development of gastric cancer through endogenously competition with microRNA-30[J]. Eur Rev Med Pharmacol Sci, 2018, 22(16): 5206-5213. http://www.ncbi.nlm.nih.gov/pubmed/30178843
    [23]
    HERAS V, SANGIAO-ALVARELLOS S, MANFREDI-LOZANO M, et al. Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, MKRN3[J]. PLoS Biol, 2019, 17(11): e3000532. doi: 10.1371/journal.pbio.3000532
    [24]
    SANGIAO-ALVARELLOS S, PENA-BELLO L, MANFREDI-LOZANO M, et al. Perturbation of hypothalamic microRNA expression patterns in male rats after metabolic distress: impact of obesity and conditions of negative energy balance[J]. Endocrinology, 2014, 155(5): 1838-1850. doi: 10.1210/en.2013-1770
    [25]
    KUOKKANEN S, CHEN B, OJALVO L, et al. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium[J]. Biol Reprod, 2010, 82(4): 791-801. doi: 10.1095/biolreprod.109.081059
    [26]
    VIDAL-GÓMEZ X, PÉREZ-CREMADES D, MOMPEÓN A, et al. MicroRNA as crucial regulators of gene expression in estradiol-treated human endothelial cells[J]. Cell Physiol Biochem, 2018, 45(5): 1878-1892. doi: 10.1159/000487910
    [27]
    BHAT-NAKSHATRI P, WANG G, COLLINS N R, et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells[J]. Nucleic Acids Res, 2009, 37(14): 4850-4861. doi: 10.1093/nar/gkp500
    [28]
    ELKS C E, PERRY J R, SULEM P, et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies[J]. Nat Genet, 2010, 42(12): 1077-1085. doi: 10.1038/ng.714
    [29]
    REINHART B J, SLACK F J, BASSON M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906. doi: 10.1038/35002607
    [30]
    ROUSH S, SLACK F J. The let-7 family of microRNAs[J]. Trends Cell Biol, 2008, 18(10): 505-516. doi: 10.1016/j.tcb.2008.07.007
    [31]
    O'DAY E, LE M T, IMAI S, et al. An RNA-binding protein, Lin28, recognizes and remodels G-quartets in the MicroRNAs(miRNAs)and mRNAs it regulates[J]. J Biol Chem, 2015, 290(29): 17909-17922. doi: 10.1074/jbc.M115.665521
    [32]
    STEFANI G, CHEN X, ZHAO H, et al. A novel mechanism of LIN-28 regulation of let-7 microRNA expression revealed by in vivo HITS-CLIP in C. elegans[J]. RNA, 2015, 21(5): 985-996. doi: 10.1261/rna.045542.114
    [33]
    FAEHNLE C R, WALLESHAUSER J, JOSHUA-TOR L. Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway[J]. Nature, 2014, 514(7521): 252-256. doi: 10.1038/nature13553
    [34]
    ESQUELA-KERSCHER A, TRANG P, WIGGINS J F, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer[J]. Cell Cycle, 2008, 7(6): 759-764. doi: 10.4161/cc.7.6.5834
    [35]
    ROTH C L, MASTRONARDI C, LOMNICZI A, et al. Expression of a tumor-related gene network increases in the mammalian hypothalamus at the time of female puberty[J]. Endocrinology, 2007, 148(11): 5147-5161. doi: 10.1210/en.2007-0634
    [36]
    GUO Y, CHEN Y, ITO H, et al. Identification and characterization of lin-28 homolog B(Lin28b) in human hepatocellular carcinoma[J]. Gene, 2006, 384: 51-61. DOI: 10.1016/j.gene.2006.07.011.
    [37]
    MOSS E G, TANG L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites[J]. Dev Biol, 2003, 258(2): 432-442. doi: 10.1016/S0012-1606(03)00126-X
    [38]
    SANGIAO-ALVARELLOS S, MANFREDI-LOZANO M, RUIZ-PINO F, et al. Testicular expression of the Lin28/let-7 system: hormonal regulation and changes during postnatal maturation and after manipulations of puberty[J]. Sci Rep, 2015, 5: 15683. DOI: 10.1038/srep15683.
    [39]
    ONG K K, ELKS C E, LI S, et al. Genetic variation in Lin28b is associated with the timing of puberty[J]. Nat Genet, 2009, 41(6): 729-733. doi: 10.1038/ng.382
    [40]
    ZHU H, SHAH S, SHYH-CHANG N, et al. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies[J]. Nat Genet, 2010, 42(7): 626-630. doi: 10.1038/ng.593
    [41]
    SANGIAO-ALVARELLOS S, MANFREDI-LOZANO M, RUIZ-PINO F, et al. Changes in hypothalamic expression of the Lin28/let-7 system and related microRNAs during postnatal maturation and after experimental manipulations of puberty[J]. Endocrinology, 2013, 154(2): 942-955. doi: 10.1210/en.2012-2006
    [42]
    SAMPSON V B, RONG N H, HAN J, et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells[J]. Cancer Res, 2007, 67(20): 9762-9770. doi: 10.1158/0008-5472.CAN-07-2462
    [43]
    SACHDEVA M, MO Y Y. miR-145-mediated suppression of cell growth, invasion and metastasis[J]. Am J Transl Res, 2010, 2(2): 170-180. http://www.ncbi.nlm.nih.gov/pubmed/20407606
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (533) PDF downloads(49) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return