Effects of exercise combined with dietary intervention on vascular endothelial function and ferroptosis in obese female university students
-
摘要:
目的 比较最大脂肪氧化(FATmax)强度有氧运动、FATmax强度运动结合抗阻训练(RT)和饮食限制对肥胖女大学生身体成分及血管内皮功能和铁死亡的影响,为探讨运动改善血管内皮功能的机制提供参考。 方法 2024年2—5月,从山西大学招募70名符合标准的肥胖女大学生随机分成对照组(n=24)、FATmax组(n=24)及FATmax+RT组(n=22)。2024年3月4日至5月26日,对照组维持正常的生活习惯,FATmax组进行每周3次、60 min/次的FATmax强度有氧运动,FATmax+RT组进行每周3次FATmax强度有氧结合抗阻运动(有氧运动和抗阻运动强度均维持在FATmax);3组受试者均进行饮食限制,每日饮食摄入的能量依据静息能耗确定。分别于试验前、后测试3组受试者身体成分、血管内皮功能及铁死亡指标,组间比较采用t检验和单因素方差分析。 结果 不同方式干预12周后,3组肥胖女大学生体重、体质量指数(BMI)、体脂肪量、腰臀比及肌肉质量差异均有统计学意义(F值分别为10.93,5.88,65.28,21.14,2.25,P值均 < 0.05)。与对照组比较,FATmax组及FATmax+RT组肥胖女大学生体重、BMI、体脂肪量及腰臀比均下降;且FATmax+RT组体脂肪量及腰臀比低于FATmax组、肌肉质量高于FATmax组及对照组(P值均 < 0.05)。不同方式干预12周后,3组肥胖女大学生血清一氧化氮(NO)、谷胱甘肽(GSH)、血清铁蛋白水平及内皮依赖性血流介导的血管舒张功能(FMD)差异均有统计学意义(F值分别为9.14,9.67,4.78,135.70,P值均 < 0.05)。与对照组比较,FATmax组及FATmax+RT组肥胖女大学生血清NO、GSH水平及FMD均增加,血清铁蛋白水平下降;与FATmax组比较,FATmax+RT组血清GSH及FMD增加、血清铁蛋白水平下降(P值均 < 0.05)。 结论 基于FATmax设计的有氧运动结合抗阻训练与单纯有氧运动的2种运动干预方案,联合饮食限制均能改善肥胖女大学生身体成分和血管内皮功能及抑制铁死亡的发生,其中FATmax强度有氧运动结合抗阻训练效果更加显著。 Abstract:Objective To compare the effects of aerobic exercise at maximal fat oxidation (FATmax) and FATmax intensity exercise combined with resistance training (RT), and dietary restriction on the body composition, vascular endothelial function and ferroptosis in obese female university students, so as to provide a reference for exploring the mechanisms by which exercise improves vascular endothelial function. Methods From February to May 2024, 70 obese female university students were recruited from Shanxi University and randomly divided into control group (n=24), FATmax group (n=24) and FATmax+RT group (n=22). From March 4 to May 26, 2024 control group maintained their normal living habits, FATmax group performed aerobic exercise at FATmax intensity three times per week for 60 minutes per session; FATmax +RT group performed combined aerobic and resistance exercise at FATmax intensity three times per week for 60 minutes per session. The daily dietary calorie intake for all groups was determined according to resting energy expenditure. Body composition, vascular endothelial function and ferroptosis were measured before and after the intervention. Results After 12 weeks of intervention, there were statistically significant differences in body mass, BMI, body fat, waist-hip ratio and muscle mass among the three groups (F=10.93, 5.88, 65.28, 21.14, 2.25, all P < 0.05). Compared with the control group, participants in both the FATmax group and the FATmax+RT group showed significant reductions in body weight, BMI, body fat and waist-hip ratio (all P < 0.05). Body fat and waist-hip ratio in FATmax+RT group were lower than those in FATmax group, and muscle mass was higher than those in FATmax group and control group (both P < 0.05). After 12 weeks of intervention, significant differences were observed among the three groups in serum NO, GSH, serum ferritin levels and FMD (F=9.14, 9.67, 4.78, 135.70, all P < 0.05). Compared with the control group, the serum NO, GSH levels and FMD significantly increased, and the serum ferritin level decreased (all P < 0.05) of obese female university students in FATmax group and FATmax+RT group. Serum GSH level and FMD increased and serum ferritin level decreased in FATmax +RT group when compared with FATmax group (all P < 0.05). Conclusions With the same exercise training duration and frequency, FATmax intensity aerobic exercise, alone or combined with resistance and dietary restriction, can significantly improve the body composition, vascular endothelial function and inhibit ferroptosis of obese female university students. However, FATmax intensity aerobic exercise combined with resistance training has more pronounced effects. -
Key words:
- Motor activity /
- Food habits /
- Intervention studies /
- Blood vessels /
- Students
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 试验前后3组肥胖女大学生身体成分指标比较(x ±s)
Table 1. Comparison of body composition before and after experiment among the three groups of obese female university students(x ±s)
组别 干预前后 人数 统计值 体重/kg BMI /(kg·m-2) 体脂肪量/kg 腰臀比 肌肉质量/kg 对照组 干预前 24 76.69±4.70 29.17±0.99 30.09±1.71 0.92±0.03 45.89±3.58 干预后 24 74.49±3.66 28.01±0.89 28.63±1.98 0.91±0.04 45.37±3.41 t值 7.16 7.73 6.82 1.90 3.62 P值 < 0.01 < 0.01 < 0.01 0.07 < 0.01 FATmax组 干预前 24 77.40±3.36 29.63±1.38 30.38±1.87 0.92±0.02 46.54±2.28 干预后 24 71.05±2.92## 27.21±1.35# 24.14±1.99## 0.87±0.03## 46.05±2.59 t值 10.19 10.35 14.26 10.65 2.06 P值 < 0.01 < 0.01 < 0.01 < 0.01 0.05 FATmax+RT组 干预前 22 77.70±2.73 29.78±0.92 30.95±1.19 0.91±0.05 47.09±2.04 干预后 22 70.28±3.21## 26.93±1.06## 22.82±1.40##▼ 0.84±0.04##▼ 47.73±2.29##▼ t值 16.16 16.58 20.86 6.55 -3.50 P值 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 注:与干预后对照组比较,#P < 0.05,##P < 0.01;与干预后FATmax组比较,▼P < 0.05。 表 2 试验前后3组肥胖女大学生血管内皮功能及铁死亡指标比较(x ±s)
Table 2. Comparison of vascular endothelial function and ferroptosis before and after experiment among the three groups of obese female university students(x ±s)
组别 干预前后 人数 统计值 NO/ (μmol·L-1) ET-1/ (ng·L-1) FMD/% GSH/ (μmol·L-1) GPX 4/ (ng·mL-1) 血清铁蛋白/ (μg·L-1) 对照组 干预前 24 38.79±4.12 58.29±10.12 8.02±0.45 114.67±12.36 72.75±11.89 112.38±14.21 干预后 24 38.38±3.72 56.42±9.79 7.92±0.47 117.66±11.70 72.96±10.49 110.29±12.73 t值 1.14 2.73 2.16 -3.16 -0.40 4.23 P值 0.27 0.01 0.04 < 0.01 0.70 < 0.01 FATmax组 干预前 24 36.92±4.23 60.79±9.73 7.88±0.61 118.83±15.20 73.29±12.94 113.33±10.81 干预后 24 42.04±3.10## 53.75±8.87 10.90±1.08## 124.54±11.66# 74.87±10.90 107.96±8.60# t值 -14.13 12.65 -15.61 -3.67 -2.61 6.15 P值 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 FATmax+RT组 干预前 22 36.77±3.89 61.18±8.78 7.72±0.51 115.09±10.21 74.05±12.95 111.45±10.63 干预后 22 42.64±4.25## 53.23±7.79 12.96±1.41##▼ 131.05±6.38#▼ 79.32±10.14# 101.09±9.41##▼ t值 -14.59 17.93 -19.96 -12.51 -6.18 17.44 P值 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 注:与干预后对照组比较,#P < 0.05,##P < 0.01;与干预后FATmax组比较,▼P < 0.05。 -
[1] ENGIN A. Endothelial dysfunction in obesity and therapeutic targets[J]. Adv Exp Med Biol, 2024, 1460: 489-538. [2] VIRDIS A, MASI S, COLUCCI R, et al. Microvascular endothelial dysfunction in patients with obesity[J]. Curr Hypertens Rep, 2019, 21(4): 32. doi: 10.1007/s11906-019-0930-2 [3] 王婷婷, 于莉莉, 陈玉善, 等. 铁死亡在动脉粥样硬化中的作用及其靶向治疗研究进展[J]. 解放军医学院学报, 2023, 44(2): 162-167.WANG T T, YU L L, CHEN Y S, et al. Research advances in role of ferroptosis in atherosclerosis and its targeted therapy[J]. Acad J Chin PLA Med Sch, 2023, 44(2): 162-167. (in Chinese) [4] 王鹏, 刘宝亮, 胡振禹, 等. 饮食限制结合不同形式运动对肥胖儿童炎症因子及肠道菌群的影响[J]. 中国学校卫生, 2024, 45(6): 794-798.WANG P, LIU B L, HU Z Y, et al. Effects of dietary restriction combined with different exercises on inflammatory factors and gut microbiota in obese children[J]. Chin J Sch Health, 2024, 45(6): 794-798. (in Chinese) [5] YANG R, WAN L, ZHU H, et al. The effect of 12 week-maximum fat oxidation intensity (FATmax) exercise on microvascular function in obese patients with nonalcoholic fatty liver disease and its mechanism[J]. Gen Physiol Biophys, 2023, 42(3): 251-262. doi: 10.4149/gpb_2023004 [6] DIAS I, FARINATTI P, DE SOUZA M G, et al. Effects of resistance training on obese adolescents[J]. Med Sci Sports Exerc, 2015, 47(12): 2636-2644. doi: 10.1249/MSS.0000000000000705 [7] 王健, 马军, 王翔. 健康教育学[M]. 北京: 高等教育出版社, 2012: 239.WANG J, MA J, WANG X. Health education[M]. Beijing: Higher Education Press, 2012: 239. (in Chinese) [8] 彭永, 朱欢, 杨梅, 等. 12周FATmax强度运动对肥胖型非酒精性脂肪肝患者血糖血脂及肝功能的影响[J]. 基因组学与应用生物学, 2022, 41(3): 648-658.PENG Y, ZHU H, YANG M, et al. The effects of 12-week FATmax intensity exercise on blood glucose, blood lipids and liver function in obese nonalcoholic fatty liver patients[J]. Genomus Appl Biol, 2022, 41(3): 648-658. (in Chinese) [9] LAWLER J M, RODRIGUEZ D A, HORD J M. Mitochondria in the middle: exercise preconditioning protection of striated muscle[J]. J Physiol, 2016, 594(18): 5161-5183. doi: 10.1113/JP270656 [10] O'DONOGHUE G, BLAKE C, CUNNINGHAM C, et al. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity?A network Meta-analysis[J]. Obes Rev, 2021, 22(2): e13137. doi: 10.1111/obr.13137 [11] 齐玉刚, 王津, 徐冬青. 有氧抗阻结合与单纯有氧运动减重干预的对比研究[J]. 天津体育学院学报, 2020, 35(5): 541-544.QI Y G, WANG J, XU D Q. Comparison of the effects of aerobic-resistance and aerobic training on body weight control in female university students with obesity[J]. J Tianjin Univ Sport, 2020, 35(5): 541-544. (in Chinese) [12] MARC-HERNÁNDEZ A, RUIZ-TOVAR J, ARACIL A, et al. Impact of exercise on body composition and cardiometabolic risk factors in patients awaiting bariatric surgery[J]. Obes Surg, 2019, 29(12): 3891-3900. [13] RAS R T, STREPPEL M T, DRAIJER R, et al. Flow-mediated dilation and cardiovascular risk prediction: a systematic review with Meta-analysis[J]. Int J Cardiol, 2013, 168(1): 344-351. [14] HE H, QIAO Y, ZHOU Q, et al. Iron overload damages the endothelial mitochondria via the ROS/ADMA/DDAHⅡ/eNOS/NO pathway[J]. Oxid Med Cell Longev, 2019, 2019: 2340-2392. [15] 刘炎冰, 李巧娥, 门杰, 等. 最大脂肪氧化强度运动和饮食限制对肥胖非酒精性脂肪肝病大学生血脂及铁死亡的影响[J]. 中国学校卫生, 2024, 45(6): 812-816, 821. doi: 10.16835/j.cnki.1000-9817.2024182LIU Y B, LI Q E, MEN J, et al. Effects of FATmax intensity exercise combined with diet intervention on lipid metabolism and ferroptosis in obese non-alcoholic fatty liver college students[J]. Chin J Sch Health, 2024, 45(6): 812-816, 821. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2024182 [16] 兰金艳. 抗阻训练对早衰模型小鼠骨骼肌萎缩的影响及蛋白质组学研究[D]. 武汉: 武汉体育学院, 2024.LAN J Y. Effects of resistance training on skeletal muscle atrophy in a mouse model of premature aging and proteomic study[D]. Wuhan: Wuhan Sport University, 2024. (in Chinese) [17] BEIJERS H J, FERREIRA I, BRAVENBOER B, et al. Higher central fat mass and lower peripheral lean mass are independent determinants of endothelial dysfunction in the elderly: the Hoorn study[J]. Atherosclerosis, 2014, 233(1): 310-318. -

计量
- 文章访问数: 17
- HTML全文浏览量: 7
- PDF下载量: 2
- 被引次数: 0