Distribution of pupil diameter and its association with myopia in school-age children
-
摘要:
目的 探究学龄儿童瞳孔直径的分布情况及其与近视之间的关联,为揭示瞳孔直径在近视发生发展过程中的作用机制提供思路。 方法 采用分层整群随机抽样与方便抽样相结合的方法,于2021年9月抽取山东省6所小学和初中学校的3 839名学龄儿童,按年级、性别、是否近视分组,探讨瞳孔直径的分布情况。采用Pearson相关分析瞳孔直径与睫状肌麻痹等效球镜度、眼轴长度以及其他变量的关系。基于倾向性得分匹配(PSM)法,将近视组与非近视组按1∶1比例进行性别和年龄的匹配。以瞳孔直径为因变量,建立广义线性模型,分析其独立影响因素及与近视的关系。 结果 学龄儿童平均瞳孔直径为(5.77±0.80)mm。瞳孔直径随年级增加呈现上升趋势(F=49.34,P<0.01)。近视儿童的平均瞳孔直径为(6.10±0.73)mm,高于非近视儿童的(5.62±0.79)mm,差异有统计学意义(t=18.10,P<0.01)。多因素广义线性模型结果显示,在调整裸眼远视力、调节幅度和年龄后,瞳孔直径与睫状肌麻痹等效球镜度呈负相关(PSM前:β=-0.089;PSM后:β=-0.063,P值均<0.01)。 结论 近视学龄儿童倾向于有更大的瞳孔直径,瞳孔直径可作为近视发生发展的重要监测指标之一。 Abstract:Objective To investigate the distribution of pupil diameter and its association with myopia in school-age children, providing ideas into the mechanisms of the role of pupil diameter in the onset and development of myopia. Methods Adopting a combination of stratified cluster random sampling and convenience sampling method, 3 839 children from six schools in Shandong Province were included in September 2021. Pupil diameters distribution was analyzed by age, sex, and myopic status. Pearson correlation analysis was used to assess the relationship between pupil diameter and cycloplegic spherical equivalent (SE), as well as axial length (AL) and other variables. Propensity score matching (PSM) was applied to match myopic and non-myopic children at a 1∶1 ratio based on age and sex. A generalized linear model (GLM) was constructed with pupil diameter as the dependent variable to identify independent factors influencing pupil size and its association with myopia. Results The mean pupil diameter of school-age children was (5.77±0.80)mm. Pupil diameter exhibited a significant increasing trend with age (F=49.34, Ptrend < 0.01). Myopic children had a significantly larger mean pupil diameter compared to non-myopic children with a statistically significant difference(t=18.10, P < 0.01). Multivariable GLM analysis, adjusted for age, amplitude of accommodation, and uncorrected visual acuity, revealed a negative correlation between pupil diameter and cycloplegic SE (before PSM: β=-0.089, after PSM: β=-0.063, both P < 0.01). Conclusions Myopic school-age children exhibite larger pupil diameters than their non-myopic counterparts. Pupil diameter may serve as a potential indicator for monitoring myopia development in school-age children. -
Key words:
- Pupil /
- Myopia /
- Child /
- Adolescent
1) 利益冲突声明 所有作者声明无利益冲突。2) 宫义卓与于俊利为共同第一作者。 -
表 1 近视与非近视学龄儿童眼科与视光学检查指标比较(x±s)
Table 1. Comparison of opthalmic and optometric parameters between myopia and non-myopic groups(x±s)
组别 人数 SE/D 眼轴长度/mm 裸眼远视力 眼压/mmHg 调节幅度/D 近视 1 214 -2.36±1.54 24.50±0.99 0.43±0.27 17.30±2.76 11.88±3.21 非近视 2 625 0.81±0.80 22.99±0.78 0.95±0.12 16.85±2.83 13.85±3.98 合计 3 839 -0.19±1.83 23.46±1.10 0.79±0.30 16.99±2.82 13.23±3.86 t值 -84.03 51.14 -83.50 4.65 -15.19 P值 <0.01 <0.01 <0.01 <0.01 <0.01 注:裸眼远视力为小数记数,1 mmHg=0.133 kPa。 表 2 不同组别学龄儿童瞳孔直径比较(x±s, mm)
Table 2. Comparison of pupil diameter in children and adolescent of different groups(x±s, mm)
年级 男生 女生 总人群 t值 P值 人数 瞳孔直径 人数 瞳孔直径 人数 瞳孔直径 一 331 5.43±0.82 276 5.50±0.76 607 5.47±0.79 -1.09 0.28 二 320 5.57±0.79 275 5.62±0.75 595 5.59±0.77 -0.78 0.43 三 320 5.58±0.87 261 5.56±0.96 581 5.57±0.91 0.19 0.85 四 244 5.81±0.84 246 5.80±0.72 490 5.80±0.78 0.16 0.88 五 230 5.80±0.67 239 5.87±0.67 469 5.83±0.67 -1.10 0.27 六 160 5.98±0.76 131 6.05±0.69 291 6.01±0.73 -0.88 0.38 七 130 6.03±0.68 158 6.12±0.61 288 6.08±0.64 -1.14 0.25 八 139 6.15±0.65 168 6.24±0.65 307 6.20±0.65 -1.16 0.25 九 84 6.04±0.84 127 6.18±0.63 211 6.12±0.72 -1.35 0.18 表 3 PSM前后学龄儿童瞳孔直径的多因素GLM分析
Table 3. Multivariate GLM analysis of pupil diameter in children and adolescents before and after PSM
匹配前后 自变量 总人群 小学低年级 小学高年级 初中 β值(95%CI) P值 β值(95%CI) P值 β值(95%CI) P值 β值(95%CI) P值 PSM前 年龄/岁 0.026(0.013~0.038) <0.01 0.012(-0.079~0.103) 0.79 0.029(-0.014~0.072) 0.18 0.007(-0.023~0.037) 0.65 (n=3 839) SE/D -0.089(-0.111~-0.067) <0.01 -0.117(-0.169~-0.065) <0.01 -0.136(-0.173~-0.098) <0.01 -0.040(-0.072~-0.009) 0.01 裸眼远视力(小数记数) -0.160(-0.288~-0.033) 0.01 -0.091(-0.422~0.239) 0.59 -0.215(-0.424~-0.007) 0.04 -0.181(-0.372~0.010) 0.06 调节幅度/D -0.032(-0.039~-0.026) <0.01 -0.041(-0.052~-0.030) <0.01 -0.022(-0.033~-0.011) <0.01 -0.036(-0.051~-0.021) <0.01 PSM后 年龄/岁 0.029(0.011~0.047) <0.01 0.426(0.064~0.789) 0.02 0.125(0.069~0.181) <0.01 0.025(-0.018~0.068) 0.26 (n=1 702) SE/D -0.063(-0.095~-0.032) <0.01 -0.173(-0.340~-0.006) 0.04 -0.068(-0.115~-0.020) 0.01 -0.048(-0.090~-0.007) 0.02 裸眼远视力(小数记数) -0.168(-0.341~0.006) 0.06 -0.725(-1.637~0.188) 0.12 -0.200(-0.446~0.047) 0.11 -0.038(-0.276~0.200) 0.75 调节幅度/D -0.017(-0.028~-0.006) <0.01 0.033(-0.005~0.071) 0.09 -0.009(-0.022~0.005) 0.22 -0.044(-0.064~-0.024) <0.01 注:小学低年级为一、二年级,小学高年级为三至五年级。 -
[1] MORGAN I G, FRENCH A N, ASHBY R S, et al. The epidemics of myopia: aetiology and prevention[J]. Prog Retin Eye Res, 2018, 62(1): 134-149. [2] LANCA C, SUN C H, CHONG R, et al. Visual field defects and myopic macular degeneration in Singapore adults with high myopia[J]. Br J Ophthalmol, 2022, 106(10): 1423-1428. doi: 10.1136/bjophthalmol-2020-318674 [3] NITZAN I, SHMUELI O, SAFIR M. Association of myopia with anxiety and mood disorders in adolescents[J]. Eye (Lond), 2024, 38(15): 3016-3018. doi: 10.1038/s41433-024-03170-6 [4] HYSI P G, CHOQUET H, KHAWAJA A P, et al. Meta-analysis of 542 934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia[J]. Nat Genet, 2020, 52(4): 401-407. doi: 10.1038/s41588-020-0599-0 [5] WANG Q, BI H Y, WANG C F, et al. Familial aggregation and heritability of myopia: a local population survey in Shanxi, China[J]. Trop Med, 2021, 2021: 4847112. [6] LI X, LI L, QIN W, et al. Urban living environment and myopia in children[J]. JAMA Netw Open, 2023, 6(12): e2346999. doi: 10.1001/jamanetworkopen.2023.46999 [7] ZADNIK K, MUTTI D O. Outdoor activity protects against childhood myopia: let the sun shine in[J]. JAMA Pediatr, 2019, 173(5): 415-416. doi: 10.1001/jamapediatrics.2019.0278 [8] DOLGIN E. The myopia boom[J]. Nature, 2015, 519(7543): 276-278. doi: 10.1038/519276a [9] RICHTER G M, WANG M, JIANG X, et al. Ocular determinants of refractive error and its age- and sex-related variations in the Chinese American eye study[J]. JAMA Ophthalmol, 2017, 135(7): 724-732. doi: 10.1001/jamaophthalmol.2017.1176 [10] CHEN J, LIU S, ZHU Z, et al. Axial length changes in progressive and non-progressive myopic children in China[J]. Graefes Arch Clin Exp Ophthalmol, 2022, 261(5): 1493-1501. [11] HAN X, XIONG R, JIN L, et al. Longitudinal changes in lens thickness and lens power among persistent non-myopic and myopic children[J]. Invest Ophthalmol Vis Sci, 2022, 63(10): 10. doi: 10.1167/iovs.63.10.10 [12] CHEN Z, NIU L, XUE F, et al. Impact of pupil diameter on axial growth in orthokeratology[J]. Optom Vis Sci, 2012, 89(11): 1636-1640. doi: 10.1097/OPX.0b013e31826c1831 [13] FU A, STAPLETON F, WEI L, et al. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression[J]. Br J Ophthalmol, 2020, 104(11): 1535-1541. [14] FLITCROFT D I, HE M, JONAS J B, et al. IMI-defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M20-M30. doi: 10.1167/iovs.18-25957 [15] DHARANI R, LEE C F, THENG Z X, et al. Comparison of measurements of time outdoors and light levels as risk factors for myopia in young Singapore children[J]. Eye, 2012, 26(7): 911-918. doi: 10.1038/eye.2012.49 [16] MCADAMS H, IGDALOVA A, SPITSCHAN M, et al. Pulses of melanopsin-directed contrast produce highly reproducible pupil responses that are insensitive to a change in background radiance[J]. Invest Ophthalmol Vis Sci, 2018, 59(13): 5615-5626. doi: 10.1167/iovs.18-25219 [17] HSU T Y, WANG H Y, CHEN J T, et al. Investigating the role of human frontal eye field in the pupil light reflex modulation by saccade planning and working memory[J]. Front Hum Neurosci, 2022, 16(1): 1044893. [18] ZHU M J, DU L L, CHEN J, et al. Photopic pupil size change in myopic orthokeratology and its influence on axial length elongation[J]. Int J Ophthalmol, 2022, 15(8): 1322-1330. doi: 10.18240/ijo.2022.08.15 [19] LIU S, HE X, WANG J, et al. Association between axial length elongation and spherical equivalent progression in Chinese children and adolescents[J]. Ophthalmic Physiol Opt, 2022, 42(5): 1133-1140. doi: 10.1111/opo.13023 [20] HUANG Z, SONG D, TIAN Z, et al. Prevalence and associated factors of myopia among adolescents aged 12-15 in Shandong Province, China: a cross-sectional study[J]. Sci Rep, 2024, 14(1): 19520. doi: 10.1038/s41598-024-70361-2 [21] LIN T, HU J, LIN J, et al. Epidemiological investigation of the status of myopia in children and adolescents in Fujian Province in 2020[J]. Jpn J Ophthalmol, 2023, 67(3): 335-345. [22] 高其乐, 周晓东, 戚慧荭, 等. 上海市金山区小学生5年屈光发育状况[J]. 中国学校卫生, 2019, 40(2): 268-269. doi: 10.16835/j.cnki.1000-9817.2019.02.030GAO Q L, ZHOU X D, QI H H, et al. Refractive development during the past 5 years among primary school students in Jinshan District of Shanghai[J]. Chin J Sch Health, 2019, 40(2): 268-269. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2019.02.030 [23] LINKE S J, BAVIERA J, MUNZER G A F, et al. Mesopic pupil size in a refractive surgery population (13 959 eyes)[J]. Optom Vis Sci, 2012, 89(8): 1156-1164. [24] CHARMAN W N. Aberrations and myopia[J]. Ophthalm Physiol Opt, 2005, 25(4): 285-301. [25] BERNAL-MOLINA P, MONTÉS-MICÓ R, LEGRAS R, et al. Depth-of-field of the accommodating eye[J]. Optom Vis Sci, 2014, 91(10): 1208-1214. -

计量
- 文章访问数: 18
- HTML全文浏览量: 9
- PDF下载量: 1
- 被引次数: 0