[1] |
BARKER D J. The fetal and infant origins of adult disease[J]. BMJ, 1990, 301(6761): 1111. doi: 10.1136/bmj.301.6761.1111
|
[2] |
BECANOVÁ J, MELYMUK L, VOJTA Š, et al. Screening for perfluoroalkyl acids in consumer products, building materials and wastes[J]. Chemosphere, 2016, 164: 322-329. doi: 10.1016/j.chemosphere.2016.08.112
|
[3] |
EVICH M G, DAVIS M J B, MCCORD J P, et al. Per- and polyfluoroalkyl substances in the environment[J]. Science, 2022, 375(6580): eabg9065. doi: 10.1126/science.abg9065
|
[4] |
SUNDERLAND E M, HU X C, DASSUNCAO C, et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. J Expo Sci Environ Epidemiol, 2019, 29(2): 131-147. doi: 10.1038/s41370-018-0094-1
|
[5] |
FENG S, LU X, OUYANG K, et al. Environmental occurrence, bioaccumulation and human risks of emerging fluoroalkylether substances: insight into security of alternatives[J]. Sci Total Environ, 2024, 922: 171151. doi: 10.1016/j.scitotenv.2024.171151
|
[6] |
WANG Z, DEWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)?[J]. Environ Sci Technol, 2017, 51(5): 2508-2518. doi: 10.1021/acs.est.6b04806
|
[7] |
侯沙沙, 朱会卷, 谢琳娜, 等. 人体内全氟化合物的暴露水平研究进展[J]. 环境卫生学杂志, 2020, 10(2): 218-225.HOU S S, ZHU H J, XIE L N, et al. Research advances in exposure level of perfluoroalkyl and polyfluoroalkyl substances in human body[J]. J Environ Hyg, 2020, 10(2): 218-225. (in Chinese)
|
[8] |
MANZANO-SALGADO C B, CASAS M, LOPEZ-ESPINOSA M J, et al. Prenatal exposure to perfluoroalkyl substances and birth outcomes in a Spanish Birth Cohort[J]. Environ Int, 2017, 108: 278-284. doi: 10.1016/j.envint.2017.09.006
|
[9] |
EICK S M, HOM THEPAKSORN E K, IZANO M A, et al. Associations between prenatal maternal exposure to per- and polyfluoroalkyl substances (PFAS) and polybrominated diphenyl ethers (PBDEs) and birth outcomes among pregnant women in San Francisco[J]. Environ Health, 2020, 19(1): 100. doi: 10.1186/s12940-020-00654-2
|
[10] |
WIKSTRÖM S, LINDH C H, SHU H, et al. Early pregnancy serum levels of perfluoroalkyl substances and risk of preeclampsia in Swedish women[J]. Sci Rep, 2019, 9(1): 9179. doi: 10.1038/s41598-019-45483-7
|
[11] |
LIAO Q, TANG P, PAN D, et al. Association of serum per- and polyfluoroalkyl substances and gestational anemia during different trimesters in Zhuang ethnic pregnancy women of Guangxi, China[J]. Chemosphere, 2022, 309(Pt 2): 136798.
|
[12] |
SOUZA M C O, SARAIVA M C P, HONDA M, et al. Exposure to per- and polyfluorinated alkyl substances in pregnant Brazilian women and its association with fetal growth[J]. Environ Res, 2020, 187: 109585. doi: 10.1016/j.envres.2020.109585
|
[13] |
ZHANG Y, PAN C, REN Y, et al. Association of maternal exposure to perfluoroalkyl and polyfluroalkyl substances with infant growth from birth to 12 months: a prospective cohort study[J]. Sci Total Environ, 2022, 806: 151303. doi: 10.1016/j.scitotenv.2021.151303
|
[14] |
MENG Q, INOUE K, RITZ B, et al. Prenatal exposure to perfluoroalkyl substances and birth outcomes; an updated analysis from the Danish National Birth Cohort[J]. Int J Environ Res Public Health, 2018, 15(9): 1832. doi: 10.3390/ijerph15091832
|
[15] |
STARLING A P, ENGEL S M, RICHARDSON D B, et al. Perfluoroalkyl substances during pregnancy and validated preeclampsia among nulliparous women in the Norwegian Mother and Child Cohort Study[J]. Am J Epidemiol, 2014, 179(7): 824-833. doi: 10.1093/aje/kwt432
|
[16] |
WANG Z, FLEISCH A, RIFAS-SHIMAN S L, et al. Associations of maternal per- and polyfluoroalkyl substance plasma concentrations during pregnancy with offspring polycystic ovary syndrome and related characteristics in project viva[J]. Environ Res, 2025, 268: 120786. doi: 10.1016/j.envres.2025.120786
|
[17] |
WANG Q, RUAN Y, LIN H, et al. Review on perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the Chinese atmospheric environment[J]. Sci Total Environ, 2020, 737: 139804. doi: 10.1016/j.scitotenv.2020.139804
|
[18] |
ZHANG Y, PAN C, REN Y, et al. Association of maternal exposure to perfluoroalkyl and polyfluroalkyl substances with infant growth from birth to 12 months: a prospective cohort study[J]. Sci Total Environ, 2022, 806: 151303. doi: 10.1016/j.scitotenv.2021.151303
|
[19] |
PAN Y, ZHU Y, ZHENG T, et al. Novel chlorinated polyfluorinated ether sulfonates and legacy per-/polyfluoroalkyl substances: placental transfer and relationship with serum albumin and glomerular filtration rate[J]. Environ Sci Technol, 2017, 51(1): 634-644. doi: 10.1021/acs.est.6b04590
|
[20] |
GAO K, ZHUANG T, LIU X, et al. Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) and association between the placental transfer efficiencies and dissociation constant of serum proteins-PFAS complexes[J]. Environ Sci Technol, 2019, 53(11): 6529-6538. doi: 10.1021/acs.est.9b00715
|
[21] |
KATO S, ITOH S, YUASA M, et al. Association of perfluorinated chemical exposure in utero with maternal and infant thyroid hormone levels in the Sapporo cohort of Hokkaido Study on the environment and children's health[J]. Environ Health Prev Med, 2016, 21(5): 334-344. doi: 10.1007/s12199-016-0534-2
|
[22] |
曹玉洁, 田英, 高宇. 氯化多氟烷基醚磺酸母婴暴露水平及对其健康的影响[J]. 环境与职业医学, 2024, 41(12): 1341-1348. doi: 10.11836/JEOM24248CAO Y J, TIAN Y, GAO Y. Levels and health effects of maternal and infant exposure to chlorinated polyfluorinated ethersulfonic acid[J]. J Environ Occup Med, 2024, 41(12): 1341-1348. (in Chinese) doi: 10.11836/JEOM24248
|
[23] |
SHOAFF J, PAPANDONATOS G D, CALAFAT A M, et al. Prenatal exposure to perfluoroalkyl substances: infant birth weight and early life growth[J]. Environ Epidemiol, 2018, 2(2): e010. doi: 10.1097/EE9.0000000000000010
|
[24] |
FEI C, MCLAUGHLIN J K, TARONE R E, et al. Fetal growth indicators and perfluorinated chemicals: a study in the Danish national birth cohort[J]. Am J Epidemiol, 2008, 168(1): 66-72. doi: 10.1093/aje/kwn095
|
[25] |
WANG Z, LUO J, ZHANG Y, et al. High maternal glucose exacerbates the association between prenatal per and polyfluoroalkyl substance exposure and reduced birth weight[J]. Sci Total Environ, 2023, 858(Pt 3): 160130.
|
[26] |
FU Z, SUN X, YANG X, et al. The association between maternal perfluoroalkylated substances exposure and neonatal birth weight: a system review and Meta-analysis[J]. Rev Environ Health, 2025, 40(2): 445-464. doi: 10.1515/reveh-2023-0174
|
[27] |
WRIGHT J M, LEE A L, RAPPAZZO K M, et al. Systematic review and Meta-analysis of birth weight and PFNA exposures[J]. Environ Res, 2023, 222: 115357. doi: 10.1016/j.envres.2023.115357
|
[28] |
CHU C, ZHOU Y, LI Q Q, et al. Are perfluorooctane sulfonate alternatives safer? New insights from a birth cohort study[J]. Environ Int, 2020, 135: 105365. doi: 10.1016/j.envint.2019.105365
|
[29] |
XU L, LI Y, CHEN L, et al. Transplacental transfer of perfluorinated and poly-fluorinated substances in maternal-cord serum and association with birth weight: a birth cohort study, China[J]. Environ Pollut, 2024, 362: 124943. doi: 10.1016/j.envpol.2024.124943
|
[30] |
ALKHALAWI E, KASPER-SONNENBERG M, WILHELM M, et al. Perfluoroalkyl acids (PFAAs) and anthropometric measures in the first year of life: results from the Duisburg birth cohort[J]. J Toxicol Environ Health, 2016, 79(22/23): 1041-1049.
|
[31] |
MWAPASA M, HUBER S, CHAKHAME B M, et al. Serum concentrations of selected poly- and perfluoroalkyl substances (pfass) in pregnant women and associations with birth outcomes. A cross-sectional study from Southern Malawi[J]. Int J Environ Res Public Health, 2023, 20(3): 1689. doi: 10.3390/ijerph20031689
|
[32] |
CHEN L, TONG C, HUO X, et al. Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and birth outcomes: a longitudinal cohort with repeated measurements[J]. Chemosphere, 2021, 267: 128899. doi: 10.1016/j.chemosphere.2020.128899
|
[33] |
GAO X, NI W, ZHU S, et al. Per- and polyfluoroalkyl substances exposure during pregnancy and adverse pregnancy and birth outcomes: a systematic review and Meta-analysis[J]. Environ Res, 2021, 201: 111632. doi: 10.1016/j.envres.2021.111632
|
[34] |
YANG Z, LIU H Y, YANG Q Y, et al. Associations between exposure to perfluoroalkyl substances and birth outcomes: a Meta-analysis[J]. Chemosphere, 2022, 291(Pt 2): 132909.
|
[35] |
ANDERSEN C S, FEI C, GAMBORG M, et al. Prenatal exposures to perfluorinated chemicals and anthropometric measures in infancy[J]. Am J Epidemiol, 2010, 172(11): 1230-1237. doi: 10.1093/aje/kwq289
|
[36] |
CHEN M H, NG S, HSIEH C J, et al. The impact of prenatal perfluoroalkyl substances exposure on neonatal and child growth[J]. Sci Total Environ, 2017, 607/608: 669-675. doi: 10.1016/j.scitotenv.2017.06.273
|
[37] |
GYLLENHAMMAR I, DIDERHOLM B, GUSTAFSSON J, et al. Perfluoroalkyl acid levels in first-time mothers in relation to offspring weight gain and growth[J]. Environ Int, 2018, 111: 191-199. doi: 10.1016/j.envint.2017.12.002
|
[38] |
LIU P, YANG F, WANG Y, et al. Perfluorooctanoic acid (PFOA) exposure in early life increases risk of childhood adiposity: a Meta-analysis of prospective cohort studies[J]. Int J Environ Res Public Health, 2018, 15(10): 2070. doi: 10.3390/ijerph15102070
|
[39] |
BRAUN J M, CHEN A, ROMANO M E, et al. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: the HOME study[J]. Obesity (Silver Spring), 2016, 24(1): 231-237. doi: 10.1002/oby.21258
|
[40] |
LIU Y, LI N, PAPANDONATOS G D, et al. Exposure to per- and polyfluoroalkyl substances and adiposity at age 12 years: evaluating periods of susceptibility[J]. Environ Sci Technol, 2020, 54(24): 16039-16049. doi: 10.1021/acs.est.0c06088
|
[41] |
LAURITZEN H B, LAROSE T L, ØIEN T, et al. Prenatal exposure to persistent organic pollutants and child overweight/obesity at 5-year follow-up: a prospective cohort study[J]. Environ Health, 2018, 17(1): 9. doi: 10.1186/s12940-017-0338-x
|
[42] |
CHEN Q, ZHANG X, ZHAO Y, et al. Prenatal exposure to perfluorobutanesulfonic acid and childhood adiposity: a prospective birth cohort study in Shanghai, China[J]. Chemosphere, 2019, 226: 17-23. doi: 10.1016/j.chemosphere.2019.03.095
|
[43] |
HALLDORSSON T I, RYTTER D, HAUG L S, et al. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study[J]. Environ Health Perspect, 2012, 120(5): 668-673. doi: 10.1289/ehp.1104034
|
[44] |
GAO Y, LUO J, ZHANG Y, et al. Prenatal exposure to per- and polyfluoroalkyl substances and child growth trajectories in the first two years[J]. Environ Health Perspect, 2022, 130(3): 37006. doi: 10.1289/EHP9875
|
[45] |
MONTAZERI P, GVIL-OUMRAIT N, MARQUEZ S, et al. Prenatal exposure to multiple endocrine-disrupting chemicals and childhood BMI trajectories in the Inma cohort study[J]. Environ Health Perspect, 2023, 131(10): 107006. doi: 10.1289/EHP11103
|
[46] |
TANNER E M, BORNEHAG C G, GENNINGS C. Dynamic growth metrics for examining prenatal exposure impacts on child growth trajectories: application to perfluorooctanoic acid (PFOA) and postnatal weight gain[J]. Environ Res, 2020, 182: 109044. doi: 10.1016/j.envres.2019.109044
|
[47] |
MAISONET M, TERRELL METRECIA L, MCGEEHIN MICHAEL A, et al. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls[J]. Environ Health Perspect, 2012, 120(10): 1432-1437. doi: 10.1289/ehp.1003096
|
[48] |
MANZANO-SALGADO C B, CASAS M, LOPEZ-ESPINOSA M J, et al. Prenatal exposure to perfluoroalkyl substances and cardiometabolic risk in children from the Spanish INMA birth cohort study[J]. Environ Health Perspect, 2017, 125(9): 097018. doi: 10.1289/EHP1330
|
[49] |
BOESEN S A H, LONG M, WIELSØE M, et al. Exposure to perflouroalkyl acids and foetal and maternal thyroid status: a review[J]. Environ Health, 2020, 19(1): 107. doi: 10.1186/s12940-020-00647-1
|
[50] |
WANG Y, ROGAN W J, CHEN P C, et al. Association between maternal serum perfluoroalkyl substances during pregnancy and maternal and cord thyroid hormones: Taiwan maternal and infant cohort study[J]. Environ Health Perspect, 2014, 122(5): 529-534. doi: 10.1289/ehp.1306925
|
[51] |
YU W G, LIU W, JIN Y H. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism[J]. Environ Toxicol Chem, 2009, 28(5): 990-996. doi: 10.1897/08-345.1
|
[52] |
HUANG K, ZHOU W, FU J, et al. Linking transthyretin-binding chemicals and free thyroid hormones: in vitro to in vivo extrapolation based on a competitive binding model[J]. Environ Sci Technol, 2023, 57(25): 9130-9139. doi: 10.1021/acs.est.3c01094
|
[53] |
PANDE A, KINKADE C W, PROUT N, et al. Prenatal exposure to synthetic chemicals in relation to HPA axis activity: a systematic review of the epidemiological literature[J]. Sci Total Environ, 2024, 956: 177300. doi: 10.1016/j.scitotenv.2024.177300
|
[54] |
ITOH S, ARAKI A, MITSUI T, et al. Association of perfluoroalkyl substances exposure in utero with reproductive hormone levels in cord blood in the Hokkaido study on environment and children's health[J]. Environ Int, 2016, 94: 51-59. doi: 10.1016/j.envint.2016.05.011
|
[55] |
WANG H, DU H, YANG J, et al. PFOS, PFOA, estrogen homeostasis, and birth size in Chinese infants[J]. Chemosphere, 2019, 221: 349-355. doi: 10.1016/j.chemosphere.2019.01.061
|
[56] |
汪子夏, 姚谦, 田英. 全氟化合物对性激素干扰作用的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(4): 540-545.WANG Z X, YAO Q, TIAN Y. Advance in research of interference effect of perfluorinated compounds on sexhormones[J]. J Shanghai Jiaotong Univ (Med Sci), 2021, 41(4): 540-545. (in Chinese)
|
[57] |
ZHANG N, WANG W S, LI W J, et al. Reduction of progesterone, estradiol and HCG secretion by perfluorooctane sulfonate via induction of apoptosis in human placental syncytiotrophoblasts[J]. Placenta, 2015, 36(5): 575-580. doi: 10.1016/j.placenta.2015.02.008
|
[58] |
PERNG W, NAKIWALA D, GOODRICH J M. What happens in utero does not stay in utero: a review of evidence for prenatal epigenetic programming by per- and polyfluoroalkyl substances(PFAS) in infants, children, and adolescents[J]. Curr Environ Health Rep, 2023, 10(1): 35-44.
|
[59] |
KOBAYASHI S, AZUMI K, GOUDARZI H, et al. Effects of prenatal perfluoroalkyl acid exposure on cord blood IGF2/H19 methylation and ponderal index: the Hokkaido Study[J]. J Expo Sci Environ Epidemiol, 2017, 27(3): 251-259. doi: 10.1038/jes.2016.50
|
[60] |
KU M S, PAN W C, HUANG Y T, et al. Associations between prenatal exposure to perfluoroalkyl substances, hypomethylation of MEST imprinted gene and birth outcomes[J]. Environ Pollut, 2022, 304: 119183. doi: 10.1016/j.envpol.2022.119183
|
[61] |
PENG L, YANG H, YE Y, et al. Role of peroxisome proliferator-activated receptors(PPARs) in trophoblast functions[J]. Int J Mol Sci, 2021, 22(1): 433. doi: 10.3390/ijms22010433
|
[62] |
SPRATLEN M J, PERERA F P, LEDERMAN S A, et al. The association between perfluoroalkyl substances and lipids in cord blood[J]. J Clin Endocrinol Metab, 2020, 105(1): 43-54. doi: 10.1210/clinem/dgz024
|
[63] |
WOLF C J, RIDER C V, LAU C, et al. Evaluating the additivity of perfluoroalkyl acids in binary combinations on peroxisome proliferator-activated receptor-α activation[J]. Toxicology, 2014, 316: 43-54. doi: 10.1016/j.tox.2013.12.002
|
[64] |
ABBOTT B D, WOOD C R, WATKINS A M, et al. Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues[J]. Reprod Toxicol, 2012, 33(4): 491-505. doi: 10.1016/j.reprotox.2011.11.005
|
[65] |
SZILAGYI J T, AVULA V, FRY R C. Perfluoroalkyl substances (PFAS) and their effects on the placenta, pregnancy, and child development: a potential mechanistic role for placental peroxisome proliferator-activated receptors (PPARs)[J]. Curr Environ Health Rep, 2020, 7(3): 222-230.
|