Effects of different types of acute exercise on working memory among sedentary college students
-
摘要:
目的 探讨不同类型急性运动对久坐大学生工作记忆的影响, 为开展运动干预提供依据。 方法 2023年4月15日-5月30日, 在北京某大学招募42名久坐大学生, 采用单盲完全随机分组实验设计, 随机分为开放式运动组、封闭式运动组和对照组, 每组14人。开放式运动组进行30 min羽毛球运动, 封闭式运动组进行30 min跑步运动, 对照组静坐30 min。所有受试者在干预前后完成工作记忆2-back任务, 并记录脑电数据。对实验前后测得的行为学和脑电数据进行重复测量方差分析。 结果 开放式运动组、封闭式运动组和对照组的正确率时间主效应(0.90±0.06, 0.94±0.05;0.88±0.05, 0.94±0.05;0.85±0.10, 0.90±0.06)差异有统计学意义(F=37.14, P<0.01);反应时的时间主效应、组别与时间交互效应[(923.65±145.08, 711.56±140.93;909.59±180.28, 807.85±169.66;917.05±166.35, 871.86±186.07)ms]差异均有统计学意义(F值分别为70.55, 11.83, P值均<0.01)。采用重复测量方差分析干预前后结果显示, 3组正确率和反应时均优于前测, 组间正确率差异无统计学意义(P>0.05);开放式运动组的反应时快于对照组(P<0.05), 封闭式运动组与对照组差异无统计学意义(P>0.05)。P2波幅的时间主效应和时间与组别交互效应有统计学意义(F值分别为10.60, 7.66, P值均<0.01), 开放式运动组的P2波幅高于对照组(P<0.05), 而封闭式运动组与对照组差异无统计学意义(P>0.05);N2波幅仅在时间主效应上有统计学意义(F=5.94, P<0.05);P3波幅的时间和电极点主效应及组别与时间交互效应均有统计学意义(F值分别为23.16, 4.53, 5.85, P值均<0.05), 两个运动组P3波幅高于对照组(P值均<0.05), 两运动组之间差异无统计学意义(P>0.05)。 结论 开放式运动对久坐大学生工作记忆的改善效果优于封闭式运动。 Abstract:Objective To explore the effects of different types of acute exercise on the working memory of sedentary college students, so as to provide a basis for exercise intervention. Methods From April 15 to May 30, 2023, a total of 42 sedentary college students were recruited from one university in Beijing. Using a single-blind, completely randomized experimental design, participants were randomly assigned to an open-skill exercise group, a closed-skill exercise group, or a control group, with 14 participants in each group. The open-skill exercise group engaged in 30 minutes of badminton, the closed-skill exercise group performed 30 minutes of running, and the control group remained seated for 30 minutes. All participants completed a 2-back working memory task and had their electroencephalogram (EEG) data recorded before and after the intervention. Results The accuracy rates of the open-skill exercise group, closed-skill exercise group, and control group (0.90±0.06, 0.94±0.05; 0.88±0.05, 0.94±0.05; 0.85±0.10, 0.90±0.06) showed a significant main effect of time (F=37.14, P < 0.01). Reaction times [(923.65±145.08, 711.56±140.93; 909.59±180.28, 807.85±169.66; 917.05±166.35, 871.86±186.07)ms] showed both a significant main effect of time and a significant interaction between group and time (F=70.55, 11.83, P < 0.01). Repeated measures ANOVA revealed that all three groups improved in accuracy and reaction time compared to pre-test values, with no significant difference in accuracy between groups. However, the reaction time of the open-skill exercise group was significantly faster than that of the control group (P < 0.05), while there was no significant difference between the closed-skill exercise group and the control group (P > 0.05). For EEG data, the P2 amplitude showed a significant main effect of time and a significant interaction between groups and time (F=10.60, 7.66, P < 0.01), with the open-skill exercise group exhibiting a higher P2 amplitude than the control group (P < 0.05), while the closed-skill exercise group showed no significant difference compared to the control group (P > 0.05). The N2 amplitude showed a significant main effect of time (F=5.94, P < 0.05). The P3 amplitude showed significant main effects of time and electrode position, as well as a significant interaction between groups and time (F=23.16, 4.53, 5.85, P < 0.05), with both exercise groups exhibiting higher P3 amplitudes than the control group (P < 0.05), but no significant difference between the two exercise groups (P > 0.05). Conclusion Open-skill exercise is more effective than closed-skill exercise in improving the working memory of sedentary college students. -
Key words:
- Motor activity /
- Sedentary lifestyle /
- Work /
- Memory /
- Intervention studies /
- Students
1) 利益冲突声明 所有作者声明无利益冲突。 -
当代大学生的生活方式静态化趋势严峻,久坐行为急剧增加,已成为影响身心健康的重要因素之一[1-2]。久坐行为指个体在清醒状态下,进行能量消耗在1~1.5代谢当量的坐着或斜躺活动[3]。研究表明,久坐行为不仅增加心血管疾病、2型糖尿病等多种慢性疾病风险[4-6],还对认知功能产生负面影响,尤其是工作记忆[7-8]。工作记忆是指大脑短时间储存和加工信息的认知系统,广泛参与学习、推理、言语处理和问题解决等高级认知活动[9]。已有研究证实,久坐可对儿童、青少年及成年早期等不同年龄段人群产生负面影响[10-12]。因此,探索有效的干预措施以缓解久坐对工作记忆的负面影响具有重要意义。急性运动作为一种短时、高效的干预方式,已被证实能够改善认知功能[13-14]。研究发现,中等强度的急性运动(如60%~69%最大心率)对工作记忆促进效果最佳[15-16],且30 min运动实践对认知提升效果较为显著[17-19]。基于运动环境的可预测性,运动类型可分为开放式运动和封闭式运动。已有研究表明,封闭式与开放式技能练习均能不同程度地促进执行功能,开放式技能练习更为有效[20-21]。但也有研究指出封闭式运动在改善工作记忆方面可能更为有效[22-23]。事件相关电位(event-related potentials,ERP)作为一种高时间分辨率的神经电生理技术,因其非侵入性、可重复和可量化的特点,成为量化认知过程的客观评价工具,能够精准捕捉大脑在工作记忆任务中的认知活动,并与认知表现呈正相关[24-25]。本研究旨在探讨急性开放式与封闭式运动对久坐大学生工作记忆的干预效果,并结合ERP技术揭示其神经生理机制。
1. 对象与方法
1.1 对象
2023年4月15日—5月30日,在首都体育学院招募42名18~25岁久坐大学生为试验对象,采用随机数字表法分为开放式运动组、封闭式运动组和对照组(各14名)。3组受试者在年龄、体质量指数、久坐时间和运动前心率方面差异均无统计学意义(F值分别为1.56,0.24,0.32,0.51,P值均>0.05)。入选标准:(1)视力或矫正视力正常;(2)右利手;(3)身体健康;(4)无规律运动习惯,每天久坐时间≥6 h,每周体育锻炼不多于3次且每次≤30 min;(5)年龄18~25岁,性别不限。排除标准:(1)体育专业学生;(2)存在运动禁忌症;(3)具有抑郁、焦虑等不良情绪。研究开始前与所有受试者签订知情同意书,且获得首都体育学院伦理委员会的审批(批号:2023A042)。
1.2 方法
试验在该大学的心理学实验室进行。试验前,要求受试者保持充足睡眠,精神状态良好;48 h内未进行剧烈运动和饮酒;2 h内未摄入咖啡因。实验流程分为3个阶段。前测阶段:进行工作记忆空间2-back任务前测,收集脑电数据。试验开始前,受试者清理头发,吹干头皮表面,配戴32导脑电帽,按照ERP实验标准调整脑电帽,使各电极阻抗低于5kΩ,主试向受试者讲解任务要求及注意事项,试验完成后告知分组情况。运动干预阶段:前测完成7 d后的同一时间点,对3组受试者同时进行运动干预;开放式运动组为30 min羽毛球运动,封闭式运动组为30 min跑步运动。运动包括5 min热身、20 min目标心率范围内运动和5 min整理活动。运动强度控制在最大心率的60%~69%范围内,试验期间使用心率表实时监控心率。后测阶段:运动后,待受试者的心率恢复至基础心率的±10%范围内,吹干头皮并配戴脑电帽,再次完成2-back任务后测。
1.3 任务测试
1.3.1 工作记忆
采用空间2-back任务测试工作记忆。通过Eprime 2.0软件设计实验程序,试验材料选择白色小方块和黑色背景。试验开始时,屏幕中间呈现2 000 ms的注视点“+”,随后,刺激材料随机出现在8个位置(上、下、左、右、左上、左下、右上、右下)。两次刺激间隔为1 000 ms的黑色空屏。任务要求受试者记住每次白色小方块出现的空间位置,并将与倒数第2个小方块位置对比。位置相同按“J”键,不同按“F”键。正式试验包括2个block,每个block包含60个Trails,共120个Trails。匹配刺激和非匹配刺激各占50%,以随机顺序呈现。试验前设置练习阶段,要求正确率达到80%才能进入正式试验。研究中根据总平均波形特征并结合前人研究[13],确定P2成分波峰探测范围为150~280 ms,N2成分的探测范围为250~350 ms,P3成分的探测范围为300~500 ms。
1.3.2 脑电数据采集
使用NeuroScan 4.5脑电采集系统及32导Ag-AgCl电极进行数据采集,电极按国际10/20系统标准放置。右侧乳突作为在线参考电极,FZ和Fcpz中点作为接地电极。采样频率为1 000 Hz,信号通过NeuroScan脑电放大器,采用0.5~30 Hz带通滤波进行放大处理。电极与头皮电阻在试验全程保持低于5 kΩ。垂直眼电(vertical electrooculogram, VEOG)通过右眼上下电极记录,水平眼电(horizontal electrooculogram, HEOG)通过双眼外侧电极记录。采集每名受试者在完成空间2-back任务时的ERP数据。
1.4 质量控制
所有实验干预措施及评估工具的使用,均由经验丰富且经过正规培训的研究人员执行,以确保试验过程的规范性,数据采集的准确性,以及研究结果的可靠性。
1.5 统计学分析
使用SPSS 26.0统计软件进行数据分析,使用Shapiro-Wilk检验和Levene's检验验证数据的正态性和方差齐性,确保参数检验的适用性。计量资料用(x±s)进行描述,若数据不满足球形性假设,采用Greenhouse Geisse校正。对试验前后测得的行为学和脑电数据进行重复测量方差分析,采用LSD检验进行事后比较,若交互效应有统计学意义,则进一步进行简单效应分析。检验水准α=0.05。
2. 结果
2.1 干预后3组大学生工作记忆任务行为表现
2.1.1 正确率
干预前后,3组正确率的重复测量方差分析结果显示,时间主效应有统计学意义(F=37.14,P<0.01,组别主效应和组别与时间交互效应均无统计学意义(F值分别为1.89,0.82,P值均>0.05)。见表 1。
表 1 不同组别久坐大学生干预前后空间2-back任务正确率与反应时(x±s)Table 1. The accuracy and reaction time of the space 2-back task before and after intervention in different groups of sedentary college students(x±s)组别 人数 正确率 反应时/ms 干预前 干预后 干预前 干预后 开放式运动组 14 0.90±0.06 0.94±0.05 923.65±145.08 711.56±140.93 封闭式运动组 14 0.88±0.05 0.94±0.05 909.59±180.28 807.85±169.66 对照组 14 0.85±0.10 0.90±0.06 917.05±166.35 871.86±186.07 2.1.2 反应时
干预前后,3组反应时的重复测量方差分析结果显示,时间主效应和组别与时间交互效应均有统计学意义(F值分别为70.55,11.83,P值均<0.01),组别主效应无统计学意义(F=0.81,P>0.05)。简单效应分析结果显示,不同时间水平下,后测时,开放式运动组和对照组反应时差异有统计学意义(P<0.05),封闭式运动组和对照组、开放式运动组和封闭式运动组差异均无统计学意义(P值均>0.05)。见表 1。
2.2 干预后3组大学生工作记忆任务ERP分析
结果如图 1所示,发现在FZ和CZ电极点诱发出较为明显的P2、N2成分,FZ、CZ和PZ电极点诱发出较为明显的P3成分。
各组在2-back任务诱发的P2、N2、P3成分波幅统计结果见表 2。P2和N2波幅采用3(组别:开放式运动组、封闭式运动组、对照组)×2(时间:前测、后测)×2(电极点:FZ、CZ)的三因素重复测量方差分析,结果显示,P2波幅的时间主效应和时间与组别交互效应均有统计学意义(F值分别为10.60,7.66,P值均<0.01),组别、电极点主效应以及时间与电极点、组别和时间与电极点交互效应均无统计学意义(F值分别为1.05,0.26,0.03,0.60,P值均>0.05)。简单效应分析显示,不同时间水平下,后测时,开放式运动组和对照组的P2波幅差异有统计学意义(P<0.05),封闭式运动组和对照组、两运动组间差异均无统计学意义(P值均>0.05)。不同组别水平下,开放式运动组后测P2波幅高于前测(P<0.05),封闭式运动组和对照组前后测变化均无统计学意义(P值均>0.05)。N2波幅分析仅显示时间主效应有统计学意义(F=5.94,P<0.05)。P3波幅采用3(组别)×2(时间)×3(电极点:FZ、CZ、PZ)的三因素重复测量方差分析,结果显示,时间和电极点主效应及组别与时间交互效应有统计学意义(F值分别为23.16,4.53,5.85,P值均<0.05)。简单效应分析显示,不同时间水平下,后测时,开放式运动组和封闭式运动组P3成分波幅高于对照组(P<0.05),而两运动组间差异无统计学意义(P>0.05)。不同组别水平下,开放式运动组和封闭式运动组后测P3成分波幅均高于前测,对照组前后测变化均无统计学意义(P值均>0.05)。
表 2 不同组别久坐大学生干预前后空间2-back任务ERP结果(x±s,μv)Table 2. ERP results of the space 2-back task before and after intervention in different groups of sedentary college students(x±s, μv)组别 干预前后 人数 P2 N2 P3 FZ CZ FZ CZ FZ CZ PZ 开放式运动组 前测 14 3.61±2.68 3.28±2.54 2.14±1.45 2.03±1.75 2.37±2.42 2.87±2.14 3.19±1.92 后测 14 5.17±2.41 4.31±2.50 1.69±1.96 1.47±1.50 3.21±2.76 3.57±2.24 5.05±2.27 封闭式运动组 前测 14 4.03±2.80 3.86±1.95 1.72±3.56 2.23±3.01 2.26±2.04 2.51±2.21 3.53±1.74 后测 14 4.25±2.78 4.27±2.22 1.32±2.91 1.65±2.04 3.14±1.90 3.31±1.77 4.88±2.12 对照组 前测 14 3.50±2.12 3.34±1.97 1.81±2.63 2.02±2.43 2.37±2.19 2.94±2.25 3.22±2.16 后测 14 3.27±1.74 3.30±1.92 1.77±1.73 1.96±1.69 2.25±2.32 2.97±1.86 3.29±1.67 3. 讨论
本研究探讨了不同类型急性运动对久坐大学生工作记忆的影响。结果表明,相较于急性封闭式运动,急性开放式运动对工作记忆的改善效果更加显著。在行为表现方面,3组后测准确率均高于前测,但组间差异均无统计学意义,可能与练习效应有关[26]。在反应时方面,急性开放式运动组优于对照组,而封闭式运动组和对照组之间差异无统计学意义。表明急性中等强度的开放式运动能有效提升久坐大学生的反应时,进而改善工作记忆表现。此发现与Chen等[27]研究结果一致,表明急性中等强度有氧运动能提高大学生在N-back任务中的表现,并伴随双侧顶叶皮层、左海马和双侧小脑活动的增强。相比封闭式运动,开放式运动的动态性要求可能对工作记忆的改善效果更为显著。例如,羽毛球运动需要参与者快速反应并调整策略,以应对不断变化的环境。这种动态环境要求更多的认知资源投入,从而增加认知负荷。而认知负荷的增加通常与更好的认知表现相关[28],与McMorris等[29]的发现一致。
ERP结果分析显示,急性开放式运动组后测P2波幅高于对照组,封闭式运动组与对照组差异无统计学意义。P2波幅与工作记忆中的注意力分配密切相关,较大的P2波幅通常反映更好的工作记忆能力[30]。本研究发现,开放式运动能有效增加注意资源,尤其是在早期知觉加工阶段,可能是其改善认知表现的重要机制。此外,P2波幅对生理唤醒水平高度敏感[31-32],羽毛球等开放式运动由于其高认知要求,能显著提升认知参与度和生理唤醒水平,从而增加P2波幅。相比之下,封闭式运动如跑步,运动模式相对固定,对外界刺激需求较低,未能显著激活与注意力分配相关的神经机制,导致P2波幅变化无统计学意义。在N2波幅方面,研究结果显示开放式运动和封闭式运动后均呈现增加趋势,但组间差异无统计学意义。N2波幅通常反映抑制控制能力,涉及集中注意力、区分目标刺激与记忆刺激的能力。急性运动未能显著增强这一认知控制功能,可能更多受到体适能水平而非急性运动的影响[33]。研究结果表明,中等强度急性开放式和封闭式运动均提升P3波幅,表明中等强度急性运动能够增强工作记忆刷新能力和认知资源分配[34-35]。P3波幅作为反映注意力集中和工作记忆更新能力的重要指标,与更好的认知表现密切相关[36-37]。开放式运动因其较高的认知负荷,激活更多的认知资源;而封闭式运动尽管模式固定,环境刺激较少,但通过提升生理唤醒水平和神经激活效能,同样能够对工作记忆产生积极影响。对照组的P3波幅变化无统计学意义,进一步支持运动干预对工作记忆的显著效果。
本研究也存在一些局限性:(1)运动类型选择较为单一,未来研究应纳入更多种类的运动,以提高结论的普适性;(2)研究主要关注急性运动的短期效应,未探讨运动强度、持续时间等因素对工作记忆改善的“剂量效应”。
-
表 1 不同组别久坐大学生干预前后空间2-back任务正确率与反应时(x±s)
Table 1. The accuracy and reaction time of the space 2-back task before and after intervention in different groups of sedentary college students(x±s)
组别 人数 正确率 反应时/ms 干预前 干预后 干预前 干预后 开放式运动组 14 0.90±0.06 0.94±0.05 923.65±145.08 711.56±140.93 封闭式运动组 14 0.88±0.05 0.94±0.05 909.59±180.28 807.85±169.66 对照组 14 0.85±0.10 0.90±0.06 917.05±166.35 871.86±186.07 表 2 不同组别久坐大学生干预前后空间2-back任务ERP结果(x±s,μv)
Table 2. ERP results of the space 2-back task before and after intervention in different groups of sedentary college students(x±s, μv)
组别 干预前后 人数 P2 N2 P3 FZ CZ FZ CZ FZ CZ PZ 开放式运动组 前测 14 3.61±2.68 3.28±2.54 2.14±1.45 2.03±1.75 2.37±2.42 2.87±2.14 3.19±1.92 后测 14 5.17±2.41 4.31±2.50 1.69±1.96 1.47±1.50 3.21±2.76 3.57±2.24 5.05±2.27 封闭式运动组 前测 14 4.03±2.80 3.86±1.95 1.72±3.56 2.23±3.01 2.26±2.04 2.51±2.21 3.53±1.74 后测 14 4.25±2.78 4.27±2.22 1.32±2.91 1.65±2.04 3.14±1.90 3.31±1.77 4.88±2.12 对照组 前测 14 3.50±2.12 3.34±1.97 1.81±2.63 2.02±2.43 2.37±2.19 2.94±2.25 3.22±2.16 后测 14 3.27±1.74 3.30±1.92 1.77±1.73 1.96±1.69 2.25±2.32 2.97±1.86 3.29±1.67 -
[1] PELLETIER J E, LYTLE L A, LASKA M N. Stress, health risk behaviors, and weight status among community college students[J]. Health Educ Behav, 2016, 43(2): 139-144. doi: 10.1177/1090198115598983 [2] JIANG L, CAO Y, NI S, et al. Association of sedentary behavior with anxiety, depression, and suicide ideation in college students[J]. Front Psychiatry, 2020, 11: 566098. doi: 10.3389/fpsyt.2020.566098 [3] OWEN N, HEALY G N, MATTHEWS C E, et al. Too much sitting: the population health science of sedentary behavior[J]. Exerc Sport Sci Rev, 2010, 38(3): 105-113. doi: 10.1097/JES.0b013e3181e373a2 [4] FORD E S, CASPERSEN C J. Sedentary behaviour and cardiovascular disease: a review of prospective studies[J]. Int J Epidemiol, 2012, 41(5): 1338-1353. doi: 10.1093/ije/dys078 [5] KATZMARZYK P T, POWELL K E, JAKICIC J M, et al. Sedentary behavior and health: update from the 2018 physical activity guidelines advisory committee[J]. Med Sci Sports Exerc, 2019, 51(6): 1227-1241. doi: 10.1249/MSS.0000000000001935 [6] PATTERSON R, MCNAMARA E, TAINIO M, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response Meta-analysis[J]. Europ J Epidemiol, 2018, 33(9): 811-829. doi: 10.1007/s10654-018-0380-1 [7] HAMER M, STAMATAKIS E. Prospective study of sedentary behavior, risk of depression, and cognitive impairment[J]. Med Sci Sports Exerc, 2014, 46(4): 718-723. doi: 10.1249/MSS.0000000000000156 [8] FALCK R S, DAVIS J C, LIU-AMBROSE T. What is the association between sedentary behaviour and cognitive function? A systematic review[J]. Br J Sports Med, 2017, 51(10): 800-811. doi: 10.1136/bjsports-2015-095551 [9] BADDELEY A. Working memory: looking back and looking forward[J]. Nature Rev Neurosci, 2003, 4(10): 829-839. doi: 10.1038/nrn1201 [10] HOANG T D, REIS J, ZHU N, et al. Effect of early adult patterns of physical activity and television viewing on midlife cognitive function[J]. JAMA Psychiatry, 2016, 73(1): 73-79. doi: 10.1001/jamapsychiatry.2015.2468 [11] TAMMELIN T. Early childhood sedentary behavior associated with worse working memory[J]. J Pediatr, 2018, 192: 266-269. http://www.xueshufan.com/publication/2773095911 [12] LÓPEZ-VICENTE M, GARCIA-AYMERICH J, TORRENT-PALLICER J, et al. Are early physical activity and sedentary behaviors related to working memory at 7 and 14 years of age?[J]. J Pediatr, 2017, 188: 35-41. doi: 10.1016/j.jpeds.2017.05.079 [13] WU C H, KARAGEORGHIS C I, WANG C C, et al. Effects of acute aerobic and resistance exercise on executive function: an ERP study[J]. J Sci Med Sport, 2019, 22(12): 1367-1372. doi: 10.1016/j.jsams.2019.07.009 [14] ZHENG K, DENG Z, QIAN J, et al. Changes in working memory performance and cortical activity during acute aerobic exercise in young adults[J]. Front Behav Neurosci, 2022, 16: 884490. doi: 10.3389/fnbeh.2022.884490 [15] HUANG T Y, CHEN F T, LI R H, et al. Effects of acute resistance exercise on executive function: a systematic review of the moderating role of intensity and executive function domain[J]. Sports Med Open, 2022, 8(1): 141. doi: 10.1186/s40798-022-00527-7 [16] MARCHANT D, HAMPSON S, FINNIGAN L, et al. The effects of acute moderate and high intensity exercise on memory[J]. Front Psychol, 2020, 11: 1716. doi: 10.3389/fpsyg.2020.01716 [17] YAMAZAKI Y, SATO D, YAMASHIRO K, et al. Inter-individual differences in exercise-induced spatial working memory improvement: a near-infrared spectroscopy study[J]. Adv Expe Med Biol, 2017, 977: 81-88. http://europepmc.org/abstract/MED/28685431 [18] WHEELER M J, GREEN D J, ELLIS K A, et al. Distinct effects of acute exercise and breaks in sitting on working memory and executive function in older adults: a three-arm, randomised cross-over trial to evaluate the effects of exercise with and without breaks in sitting on cognition[J]. Br J Sports Med, 2020, 54(13): 776-781. doi: 10.1136/bjsports-2018-100168 [19] KAMIJO K, ABE R. Aftereffects of cognitively demanding acute aerobic exercise on working memory[J]. Med Sci Sports Exerc, 2019, 51(1): 153-159. doi: 10.1249/MSS.0000000000001763 [20] FENG X, ZHANG Z, JIN T, et al. Effects of open and closed skill exercise interventions on executive function in typical children: a Meta-analysis[J]. BMC Psychol, 2023, 11(1): 420. doi: 10.1186/s40359-023-01317-w [21] QIU C, ZHAI Q, CHEN S. Effects of practicing closed- vs. open-skill exercises on executive functions in individuals with attention deficit hyperactivity disorder (ADHD): a Meta-analysis and systematic review[J]. Behav Sci (Basel, Switzerland), 2024, 14(6): 499. http://www.mdpi.com/2829188 [22] CANTRELLE J, BURNETT G, LOPRINZI P D. Acute exercise on memory function: open vs. closed skilled exercise[J]. Health Promot Perspect, 2020, 10(2): 123-128. http://doc.paperpass.com/foreign/rgArti2020241593721.html [23] LI Q, ZHAO Y, WANG Y, et al. Comparative effectiveness of open and closed skill exercises on cognitive function in young adults: a fNIRS study[J]. Sci Rep, 2024, 14(1): 21007. doi: 10.1038/s41598-024-70614-0 [24] HSIEH S S, FUNG D, TSAI H, et al. Differences in working memory as a function of physical activity in children[J]. Neuropsychology, 2018, 32(7): 797-808. doi: 10.1037/neu0000473 [25] LI W, GUO Z, JONES J A, et al. Training of working memory impacts neural processing of vocal pitch regulation[J]. Sci Rep, 2015, 5: 16562. http://www.nature.com/articles/srep16562.pdf [26] DUFF K, CALLISTER C, DENNETT K, et al. Practice effects: a unique cognitive variable[J]. Clinic Neuropsychol, 2012, 26(7): 1117-1127. http://europepmc.org/abstract/med/23020261 [27] CHEN A G, ZHU L N, YAN J, et al. Neural basis of working memory enhancement after acute aerobic exercise: fmri study of preadolescent children[J]. Front Psychol, 2016, 7: 1804. http://www.onacademic.com/detail/journal_1000040534794310_ef5b.html [28] ALY M, KOJIMA H. Acute moderate-intensity exercise generally enhances neural resources related to perceptual and cognitive processes: a randomized controlled ERP study[J]. Ment Health Phys Activ, 2020, 19: 100363. doi: 10.1016/j.mhpa.2020.100363 [29] MCMORRIS T, SPROULE J, TURNER A, et al. Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a Meta-analytical comparison of effects[J]. Physiol Behav, 2011, 102(3): 421-428. http://www.ncbi.nlm.nih.gov/pubmed/21163278 [30] FINNIGAN S, O'CONNELL R G, CUMMINS T D R, et al. ERP measures indicate both attention and working memory encoding decrements in aging[J]. Psychophysiology, 2011, 48(5): 601-611. doi: 10.1111/j.1469-8986.2010.01128.x [31] ZHOU F, QIN C. Acute moderate-intensity exercise generally enhances attentional resources related to perceptual processing[J]. Front Psychol, 2019, 10: 2547. http://www.xueshufan.com/publication/2989343657 [32] IMBIR K, SPUSTEK T, BERNATOWICZ G, et al. Two aspects of activation: arousal and subjective significance-behavioral and event-related potential correlates investigated by means of a modified emotional stroop task[J]. Front Human Neurosci, 2017, 11: 608. http://www.researchgate.net/profile/Kamil_Imbir/publication/321748032_Two_Aspects_of_Activation_Arousal_and_Subjective_Significance-Behavioral_and_Event-Related_Potential_Correlates_Investigated_by_Means_of_a_Modified_Emotional_Stroop_Task/links/5a2f9d4e4585155b617a4fb6/Two-Aspects-of-Activation-Arousal-and-Subjective-Significance-Behavioral-and-Event-Related-Potential-Correlates-Investigated-by-Means-of-a-Modified-Emotional-Stroop-Task.pdf [33] STROTH S, KUBESCH S, DIETERLE K, et al. Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents[J]. Brain Res, 2009, 1269: 114-124. http://www.researchgate.net/profile/Markus_Kiefer/publication/24199667_Physical_fitness_but_not_acute_exercise_modulates_event-related_potential_indices_for_executive_control_in_healthy_adolescents._Brain_Res/links/0c9605243e4ff2eee8000000.pdf [34] SCUDDER M R, DROLLETTE E S, PONTIFEX M B, et al. Neuroelectric indices of goal maintenance following a single bout of physical activity[J]. Biol Psychol, 2012, 89(2): 528-531. [35] PONTIFEX M B, SALIBA B J, RAINE L B, et al. Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder[J]. J Pediatr, 2013, 162(3): 543-551. http://europepmc.org/articles/PMC3556380/ [36] CHANG Y K, LABBAN J D, GAPIN J I, et al. The effects of acute exercise on cognitive performance: a Meta-analysis[J]. Brain Res, 2012, 1453: 87-101. http://www.onacademic.com/detail/journal_1000035033232410_aacc.html [37] NEWSOME R N, PUN C, SMITH V M, et al. Neural correlates of cognitive decline in older adults at-risk for developing MCI: evidence from the CDA and P300[J]. Cognit Neurosci, 2013, 4(3/4): 152-162. http://www.xueshufan.com/publication/2082818704 -