Prospective study of association between dietary macronutrients and lung function in school-aged children
-
摘要:
目的 探究学龄儿童膳食宏量营养素与肺功能的纵向关联,为促进儿童肺健康提供营养研究证据。 方法 2021年11月,采用分层整群随机抽样方法从中国西南儿童营养与生长(SCCNG)队列中选取2所位于四川省成都市的小学,共纳入1 112名8~13岁学龄儿童,基线时调查儿童的膳食、社会人口学特征等,随访1年后测量儿童的用力肺活量(FVC)并将其转换为Z评分(FVC-Z),同时计算肺活量指数(VCI); 采用广义线性回归分析膳食宏量营养素与肺功能的关联,及其与性别和年龄的交互作用,并进行分层分析。 结果 广义线性回归模型分析结果显示,调整混杂因素后,碳水化合物供能比与学龄儿童FVC-Z(β=-0.02)和VCI(β=-0.16)均呈负相关,脂肪供能比与FVC-Z(β=0.03)和VCI(β=0.23)均呈正相关(P值均 < 0.05); 蛋白质供能比仅在女童中与FVC-Z(β=0.09)和VCI(β=0.60)呈正相关(P值均 < 0.05); 年龄对宏量营养素和肺功能关联有交互作用(P交互值均 < 0.01),在8~9和10~11岁儿童中,碳水化合物供能比与FVC-Z(β值分别为-0.04,-0.03)和VCI(β值分别为-0.29,-0.21)均呈负相关,脂肪供能比与FVC-Z(β值分别为0.07,0.05)和VCI(β值分别为0.46,0.32)均呈正相关(P值均 < 0.05)。 结论 膳食宏量营养素与儿童肺功能的关联存在年龄和性别差异。低碳水高脂肪的膳食对儿童肺功能有促进作用,蛋白质对女童肺功能有促进作用,学龄儿童早期可能是膳食干预肺功能的窗口期。 Abstract:Objective To explore the longitudinal associations between dietary macronutrients and lung function in school-aged children, so as to provide the nutritional research evidence for promoting children's lung health. Methods In November 2021, two primary schools located in Chengdu, Sichuan Province were selected from the Southwest China Childhood Nutrition and Growth (SCCNG) cohort by a stratified cluster random sampling method, enrolling a total of 1 112 school-aged children aged 8 to 13 years. At baseline, the dietary and sociodemographic characteristics of the children were assessed. One year later, the forced vital capacity (FVC) of the children was measured and converted into Z-scores (FVC-Z), while the vital capacity index (VCI) was also calculated. Generalized linear regression analysis was employed to examine the associations between dietary macronutrients and lung function, considering interactions with gender and age, followed by stratified analysis. Results After adjusting for confounding factors, the analysis results of the generalized linear regression model showed that the carbohydrate energy ratio was negatively correlated with FVC-Z (β=-0.02) and VCI (β=-0.16), while the fat energy ratio showed a positive correlation with FVC-Z (β=0.03) and VCI (β=0.23) (P < 0.05). The protein energy ratio was positively correlated with FVC-Z (β=0.09) and VCI (β=0.60) specifically in girls (P < 0.05). Additionally, there was an interaction effect of age on the associations between macronutrients and lung function (P < 0.01); in children aged 8-9 and 10-11, the carbohydrate energy supply ratio was negatively correlated with FVC-Z (β=-0.04, -0.03) and VCI (β=-0.29, -0.21), and fat energy supply ratio was positively correlated with FVC-Z (β=0.07, 0.05) and VCI (β=0.46, 0.32) (P < 0.05). Conclusions There are age and sex differences in the association of dietary macronutrients with lung function, with a low-carbohydrate, high-fat diet promoting lung function in children. Additionally, protein intake appears to have a positive influence on the lung function of girls. The early school-age period may represent a critical window for dietary interventions aimed at promoting lung health. -
Key words:
- Nutritional status /
- Diet surveys /
- Lung /
- Regression analysis /
- Child
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 宏量营养素供能比与学龄儿童肺功能关联的广义线性回归分析[β值(95%CI),n=1 112]
Table 1. Generalized linear regression analysis of association between macronutrient energy ratios and lung [JZ] function in school-aged children[β(95%CI), n=1 112]
宏量营养素供能比 FVC-Z VCI 模型1 模型2 模型1 模型2 碳水化合物 -0.03(-0.05~-0.01)** -0.02(-0.04~-0.01)** -0.21(-0.38~-0.05)* -0.16(-0.28~-0.03)* 蛋白质 0.03(-0.03~0.08) 0.04(-0.01~0.09) 0.11(-0.35~0.58) 0.25(-0.10~0.60) 脂肪 0.05(0.02~0.08)** 0.03(0.01~0.06)** 0.38(0.15~0.60)** 0.23(0.06~0.40)** 注:*P < 0.05,**P < 0.01; 模型1未调整混杂因素; 模型2调整了性别、年龄、BMI-Z、母亲文化水平、家庭月收入、是否暴露于吸烟环境、MVPA、久坐行为、能量摄入; 因变量FVC-Z、VCI与自变量碳水化合物、蛋白质和脂肪供能比均为连续型变量。 表 2 不同性别儿童宏量营养素供能比与肺功能关联的广义线性回归分析[β值(95%CI)]
Table 2. Generalized linear regression analysis of association between macronutrient energy ratios and lung function in children of different genders[β(95%CI)]
因变量 自变量 男童(n=541) 女童(n=571) P交互值 模型1 模型2 模型1 模型2 FVC-Z 碳水化合物 -0.02(-0.05~0.01) -0.01(-0.04~0.01) -0.04(-0.07~-0.01)** -0.04(-0.06~-0.01)** 0.19 蛋白质 -0.01(-0.08~0.08) -0.01(-0.08~0.06) 0.06(-0.02~0.14) 0.09(0.02~0.16)* 0.06 脂肪 0.04(0.01~0.08)* 0.03(-0.01~0.06) 0.06(0.02~0.09)** 0.04(0.01~0.08)* 0.47 VCI 碳水化合物 -0.16(-0.40~0.08) -0.09(-0.27~0.10) -0.29(-0.51~-0.06)* -0.23(-0.40~-0.06)** 0.28 蛋白质 -0.08(-0.74~0.58) -0.06(-0.57~0.45) 0.40(-0.24~1.04) 0.60(0.12~1.08)* 0.07 脂肪 0.35(0.03~0.67)* 0.19(-0.06~0.44) 0.42(0.11~0.73)** 0.28(0.05~0.51)* 0.67 注:*P < 0.05,**P < 0.01; 模型1未调整混杂因素; 模型2调整了年龄、BMI-Z、母亲文化水平、家庭月收入、是否暴露于吸烟环境、MVPA、久坐行为、能量摄入; P交互值根据模型2计算性别与三大宏量营养素的交互作用; 因变量FVC-Z、VCI与自变量碳水化合物、蛋白质和脂肪供能比均为连续型变量。 表 3 不同年龄组儿童宏量营养素供能比与肺功能的广义线性回归分析[β值(95%CI)]
Table 3. Generalized linear regression analysis of association between macronutrient energy ratios and lung function in children of different ages[β(95%CI)]
因变量 自变量 8~9岁(n=191) 10~11岁(n=541) 12~13岁(n=380) P交互值 模型1 模型2 模型1 模型2 模型1 模型2 FVC-Z 碳水化合物 -0.06(-0.10~-0.01)** -0.04(-0.08~-0.01)* -0.03(-0.06~-0.01)* -0.03(-0.06~-0.01)** 0.02(-0.02~0.06) 0.02(-0.01~0.05) < 0.01 蛋白质 0.10(-0.02~0.22) 0.05(-0.06~0.17) 0.04(-0.04~0.12) 0.06(-0.01~0.13) -0.09(-0.19~0.01) -0.05(-0.14~0.03) < 0.01 脂肪 0.09(0.03~0.14)** 0.07(0.01~0.12)* 0.06(0.02~0.09)** 0.05(0.02~0.08)** -0.02(-0.08~0.03) -0.03(-0.08~0.01) < 0.01 VCI 碳水化合物 -0.49(-0.88~-0.09)* -0.29(-0.58~-0.00)* -0.22(-0.45~0.01) -0.21(-0.38~-0.04)* 0.16(-0.15~0.46) 0.14(-0.10~0.38) < 0.01 蛋白质 0.83(-0.30~1.96) 0.40(-0.42~1.22) 0.08(-0.57~0.73) 0.35(-0.12~0.82) -0.64(-1.46~0.17) -0.39(-1.03~0.26) < 0.01 脂肪 0.75(0.22~1.27)** 0.46(0.08~0.84)* 0.41(0.10~0.72)** 0.32(0.10~0.55)** -0.19(-0.60~0.23) -0.22(-0.54~0.11) < 0.01 注:*P < 0.05,**P < 0.01; 模型1未调整混杂因素; 模型2调整了性别、BMI-Z、母亲文化水平、家庭月收入、是否暴露于吸烟环境、MVPA、久坐行为、能量摄入; P交互值根据模型2计算年龄与三大宏量营养素的交互作用; 因变量FVC-Z、VCI与自变量碳水化合物、蛋白质和脂肪供能比均为连续型变量。 -
[1] MELEN E, FANER R, ALLINSON J P, et al. Lung-function trajectories: relevance and implementation in clinical practice[J]. Lancet, 2024, 403(10435): 1494-1503. doi: 10.1016/S0140-6736(24)00016-3 [2] BUI D S, LODGE C J, BURGESS J A, et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life[J]. Lancet Respir Med, 2018, 6(7): 535-544. doi: 10.1016/S2213-2600(18)30100-0 [3] AGUSTI A, FANER R. Lung function trajectories in health and disease[J]. Lancet Respir Med, 2019, 7(4): 358-364. doi: 10.1016/S2213-2600(18)30529-0 [4] ZHANG X, GRAY A R, HANCOX R J. Distinct trajectories of lung function from childhood to mid-adulthood[J]. Thorax, 2024, 79(8): 754-761. doi: 10.1136/thorax-2023-220436 [5] WANG G, HALLBERG J, FANER R, et al. Plasticity of individual lung function states from childhood to adulthood[J]. Am J Respir Crit Care Med, 2023, 207(4): 406-415. doi: 10.1164/rccm.202203-0444OC [6] TALAEI M, HUGHES D A, MAHMOUD O, et al. Dietary intake of vitamin A, lung function and incident asthma in childhood[J]. Eur Respir J, 2021, 58(4): 2004407. doi: 10.1183/13993003.04407-2020 [7] WANG S, YIN P, YU L, et al. Effects of early diet on the prevalence of allergic disease in children: a systematic review and Meta-analysis[J]. Adv Nutr, 2024, 15(1): 100128. doi: 10.1016/j.advnut.2023.10.001 [8] 毛泳雯, 刘雪婷, 何春雷, 等. 成都市小学生膳食摄入对肺功能的前瞻性影响[J]. 中国学校卫生, 2024, 45(2): 183-187, 192. doi: 10.16835/j.cnki.1000-9817.2024052MAO Y W, LIU X T, HE C L, et al. Prospective effects of dietary intake on lung function of pupils in Chengdu City[J]. Chin J Sch Health, 2024, 45(2): 183-187, 192. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2024052 [9] XU Y, XIONG J, GAO W, et al. Dietary fat and polyunsaturated fatty acid intakes during childhood are prospectively associated with puberty timing independent of dietary protein[J]. Nutrients, 2022, 14(2): 275. doi: 10.3390/nu14020275 [10] WHITE I R, ROYSTON P, WOOD A M. Multiple imputation using chained equations: issues and guidance for practice[J]. Stat Med, 2011, 30(4): 377-399. doi: 10.1002/sim.4067 [11] 段若男, 刘言, 薛红妹, 等. 成都市儿童青少年膳食质量评价及其与超重/肥胖的关系[J]. 中华流行病学杂志, 2014, 35(9): 994-997.DUAN R N, LIU Y, XUE H M, et al. Cross-sectional association between overall diet quality and overweight/obesity among children and adolescents in Chengdu[J]. Chin J Epidemiol, 2014, 35(9): 994-997. (in Chinese) [12] 杨月欣. 中国食物成分表[M]. 北京: 北京大学医学出版社, 2019.YANG Y X. China food composition tables[M]. Beijing: Peking University Medical Press, 2019. (in Chinese) [13] 姜林梦, 王宇, 王淮燕. 早产儿不同年龄阶段肺功能检测研究进展[J]. 国际儿科学杂志, 2024, 51(6): 387-392. doi: 10.3760/cma.j.issn.1673-4408.2024.06.007JIANG L M, WANG Y, WANG H Y. Advances of lung function test at different ages in premature infants[J]. Int J Pediatr, 2024, 51(6): 387-392. (in Chinese) doi: 10.3760/cma.j.issn.1673-4408.2024.06.007 [14] QUANJER P H, STANOJEVIC S, COLE T J, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations[J]. Eur Respir J, 2012, 40(6): 1324-1343. doi: 10.1183/09031936.00080312 [15] COLE T J. The LMS method for constructing normalized growth standards[J]. Eur J Clin Nutr, 1990, 44(1): 45-60. http://www.cabdirect.org/abstracts/19901452802.html [16] 李辉, 季成叶, 宗心南, 等. 中国0~18岁儿童、青少年体块指数的生长曲线[J]. 中华儿科杂志, 2009, 47(7): 493-498. doi: 10.3760/cma.j.issn.0578-1310.2009.07.004LI H, JI C Y, ZONG X N, et al. Body mass index growth carves for Chinese children and adolescents aged 0 to 18 years[J]. Chin J Pediatr, 2009, 47(7): 493-498. (in Chinese) doi: 10.3760/cma.j.issn.0578-1310.2009.07.004 [17] MATTHEWS C E, SHU X O, YANG G, et al. Reproducibility and validity of the Shanghai Women's Health Study Physical Activity Questionnaire[J]. Am J Epidemiol, 2003, 158(11): 1114-1122. doi: 10.1093/aje/kwg255 [18] BUTTE N F, WATSON K B, RIDLEY K, et al. A youth compendium of physical activities: activity codes and metabolic intensities[J]. Med Sci Sports Exerc, 2018, 50(2): 246-256. doi: 10.1249/MSS.0000000000001430 [19] LEE S A, JOSHI P, KIM Y, et al. The association of dietary macronutrients with lung function in healthy adults using the Ansan-Ansung Cohort Study[J]. Nutrients, 2020, 12(9): 2688. doi: 10.3390/nu12092688 [20] MUSIOL S, HARRIS C P, KARLINA R, et al. Dietary digestible carbohydrates are associated with higher prevalence of asthma in humans and with aggravated lung allergic inflammation in mice[J]. Allergy, 2023, 78(5): 1218-1233. doi: 10.1111/all.15589 [21] RODRIGUES L C, MOTA J F, CORGOSINHO F C, et al. Nutrient intake is a predictor of lung function in obese asthmatic adolescents undergoing interdisciplinary therapy[J]. Br J Nutr, 2019, 122(9): 974-985. doi: 10.1017/S0007114519001739 [22] WOOD L G, GARG M L, GIBSON P G. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma[J]. J Allergy Clin Immunol, 2011, 127(5): 1133-1140. doi: 10.1016/j.jaci.2011.01.036 [23] 邵剑, 赵绮华, 牛菁. 低糖高脂营养膳食对慢性阻塞性肺疾病急性发作并发呼吸衰竭病人疗效的影响[J]. 肠外与肠内营养, 2016, 23(4): 212-215.SHAO J, ZHAO Q H, NIU J. Therapeutic effects of low carbohydrate and high fat enteral nutritional diet on patients with chronic obstructive pulmonary disease comorbidity with respiratory failure[J]. Parenter Enter Nutr, 2016, 23(4): 212-215. (in Chinese) [24] GOLDBERG E L, MOLONY R D, KUDO E, et al. Ketogenic diet activates protective gammadelta T cell responses against influenza virus infection[J]. Sci Immunol, 2019, 4(41): eaav2026. doi: 10.1126/sciimmunol.aav2026 [25] CORNELL K, ALAM M, LYDEN E, et al. Saturated fat intake is associated with lung function in individuals with airflow obstruction: results from NHANES 2007(-)2012[J]. Nutrients, 2019, 11(2): 317. doi: 10.3390/nu11020317 [26] TOFTLUND L H, AGERTOFT L, HALKEN S, et al. Improved lung function at age 6 in children born very preterm and fed extra protein post-discharge[J]. Pediatr Allergy Immunol, 2019, 30(1): 47-54. doi: 10.1111/pai.12981 [27] BIZZOZERO-PERONI B, MARTINEZ-VIZCAINO V, GARRIDO-MIGUEL M, et al. The association between meat consumption and muscle strength index in young adults: the mediating role of total protein intake and lean mass percentage[J]. Eur J Nutr, 2023, 62(2): 673-683. [28] LINGAPPAN K, JIANG W, WANG L, et al. Sex-specific differences in hyperoxic lung injury in mice: role of cytochrome P450 (CYP)1A[J]. Toxicology, 2015, 331: 14-23. doi: 10.1016/j.tox.2015.01.019 [29] CLAIR G, BRAMER L M, MISRA R, et al. Proteomic analysis of human lung development[J]. Am J Respir Crit Care Med, 2022, 205(2): 208-218. doi: 10.1164/rccm.202008-3303OC [30] HAN Y Y, FORNO E, WITCHEL S F, et al. Testosterone-to-estradiol ratio and lung function in a prospective study of Puerto Rican youth[J]. Ann Allergy Asthma Immunol, 2021, 127(2): 236-242. doi: 10.1016/j.anai.2021.04.013 -

计量
- 文章访问数: 84
- HTML全文浏览量: 29
- PDF下载量: 24
- 被引次数: 0