[1] |
GENOVESE A, BUTLER M G. The autism spectrum: behavioral, psychiatric and genetic associations[J]. Genes, 2023, 14(3): 677. doi: 10.3390/genes14030677
|
[2] |
ÇAĜLAR E, KAYNAK H. Working memory functions in autism spectrum disorder: a review[J]. Klinik Psikoloji Dergisi, 2021, 5(2): 202-212.
|
[3] |
STEVENSON R A, RUPPEL J, SUN S Z, et al. Visual working memory and sensory processing in autistic children[J]. Sci Rep, 2021, 11(1): 3648. doi: 10.1038/s41598-021-82777-1
|
[4] |
VICARI S, BELLUCCI S, CARLESIMO G A. Evidence from two genetic syndromes for the independence of spatial and visual working memory[J]. Dev Med Child Neurol, 2006, 48(2): 126-131. doi: 10.1017/S0012162206000272
|
[5] |
VOGAN V M, MORGAN B R, SMITH M L, et al. Functional changes during visuo-spatial working memory in autism spectrum disorder: 2-year longitudinal functional magnetic resonance imaging study[J]. Autism, 2019, 23(3): 639-652. doi: 10.1177/1362361318766572
|
[6] |
ZHOU R, XIE X, WANG J, et al. Why do children with autism spectrum disorder have abnormal visual perception?[J]. Front Psychiatry, 2023, 14: 1087122. doi: 10.3389/fpsyt.2023.1087122
|
[7] |
MOHAMMED H S, EL-SADY S R, HAFEZ N G E L D, et al. A systematic review to investigate the evidence of the visuospatial working memory dysfunction in the autism spectrum disorder[J]. Ain Shams Med J, 2020, 71(3): 535-549. doi: 10.21608/asmj.2020.141257
|
[8] |
DESAUNAY P, BRIANT A R, BOWLER D M, et al. Memory in autism spectrum disorder: a Meta-analysis of experimental studies[J]. Psychol Bull, 2020, 146(5): 377. doi: 10.1037/bul0000225
|
[9] |
ZHANG M, JIAO J, HU X, et al. Exploring the spatial working memory and visual perception in children with autism spectrum disorder and general population with high autism-like traits[J]. PLoS One, 2020, 15(7): e0235552. doi: 10.1371/journal.pone.0235552
|
[10] |
ZHAO H C, LV R, ZHANG G Y, et al. Alterations of prefrontal-posterior information processing patterns in autism spectrum disorders[J]. Front Neurosci, 2022, 15: 768219. doi: 10.3389/fnins.2021.768219
|
[11] |
LANDES J K. The effectiveness of EEG neurofeedback for executive functions (inhibition and updating of working memory) in children with neurodevelopmental disorders[D]. Murdoch: Murdoch University, 2020.
|
[12] |
SATO J, SAFAR K, VOGAN V M, et al. Functional connectivity changes during working memory in autism spectrum disorder: a 2-year longitudinal MEG study[J]. NeuroImage Clin, 2023, 37: 103364. doi: 10.1016/j.nicl.2023.103364
|
[13] |
HAN Y M Y, CHAN M C, CHAN M M Y, et al. Effects of working memory load on frontal connectivity in children with autism spectrum disorder: a fNIRS study[J]. Sci Rep, 2022, 12(1): 1522. doi: 10.1038/s41598-022-05432-3
|
[14] |
WANG Z, JING J, IGARASHI K, et al. Executive function predicts the visuospatial working memory in autism spectrum disorder and attention-deficit/hyperactivity disorder[J]. Autism Res, 2018, 11(8): 1148-1156. doi: 10.1002/aur.1967
|
[15] |
SENG G J, TSENG W L, CHIU Y N, et al. Executive functions in youths with autism spectrum disorder and their unaffected siblings[J]. Psychol Med, 2021, 51(15): 2571-2580. doi: 10.1017/S0033291720001075
|
[16] |
LYNN A, LUNA B, O'HEARN K. Visual working memory performance is intact across development in autism spectrum disorder[J]. Autism Res, 2022, 15(5): 881-891. doi: 10.1002/aur.2683
|
[17] |
GRAHAM J D, BREMER E, BEDARD C, et al. Acute effects of an afterschool running and reading program on executive functioning in children: an exploratory study[J]. Front Public Health, 2020, 8: 593916. doi: 10.3389/fpubh.2020.593916
|
[18] |
ALSAEDI R H, CARRINGTON S, WATTERS J J. Behavioral and neuropsychological evaluation of executive functions in children with autism spectrum disorder in the gulf region[J]. Brain Sci, 2020, 10(2): 120. doi: 10.3390/brainsci10020120
|
[19] |
CHEN S F, CHIEN Y L, WU C T, et al. Deficits in executive functions among youths with autism spectrum disorders: an age-stratified analysis[J]. Psychol Med, 2016, 46(8): 1625-1638. doi: 10.1017/S0033291715002238
|
[20] |
DIRKS B, ROMERO C, VOORHIES W, et al. Neural responses to a putative set-shifting task in children with autism spectrum disorder[J]. Autism Res, 2020, 13(9): 1501-1515. doi: 10.1002/aur.2347
|
[21] |
WOLFF N, CHMIELEWSKI W X, BESTE C, et al. Working memory load affects repetitive behaviour but not cognitive flexibility in adolescent autism spectrum disorder[J]. World J Biol Psychiatry, 2018, 19(7): 509-520. doi: 10.1080/15622975.2017.1296973
|
[22] |
SMITH H, CARTER A S, BLASER E, et al. Successful attentional set-shifting in 2-year-old with and without autism spectrum disorder[J]. PLoS One, 2019, 14(3): e0213903. doi: 10.1371/journal.pone.0213903
|
[23] |
EGGER F, CONZELMANN A, SCHMIDT M. The effect of acute cognitively engaging physical activity breaks on children's executive functions: too much of a good thing?[J]. Psychol Sport Exerc, 2018, 36: 178-186. doi: 10.1016/j.psychsport.2018.02.014
|
[24] |
CREMONE-CAIRA A, TRIER K, SANCHEZ V, et al. Inhibition in developmental disorders: a comparison of inhibition profiles between children with autism spectrum disorder, attention-deficit/hyperactivity disorder, and comorbid symptom presentation[J]. Autism, 2021, 25(1): 227-243. doi: 10.1177/1362361320955107
|
[25] |
CRUZ S, CRUZ R, ALCÓN A, et al. How executive functions correlate with intelligence in children and adolescents in autism spectrum disorders[J]. J Cogn Dev, 2022, 23(5): 776-790. doi: 10.1080/15248372.2022.2104283
|
[26] |
KARALUNAS S L, HAWKEY E, GUSTAFSSON H, et al. Overlapping and distinct cognitive impairments in attention-deficit/hyperactivity and autism spectrum disorder without intellectual disability[J]. J Abnorm Child Psychol, 2018, 46(8): 1705-1716. doi: 10.1007/s10802-017-0394-2
|
[27] |
TRUEDSSON E, BOHLIN G, WÅHLSTEDT C. The specificity and independent contribution of inhibition, working memory, and reaction time variability in relation to symptoms of ADHD and ASD[J]. J Atten Disord, 2020, 24(9): 1266-1275. doi: 10.1177/1087054715587093
|
[28] |
CISSNE M N, BELLESHEIM K R, CHRIST S E. Inhibitory control in male and female adolescents with autism spectrum disorder (ASD)[J]. Dev Neuropsychol, 2022, 47(8): 369-383. doi: 10.1080/87565641.2022.2154770
|
[29] |
KRISHNAMURTHY K, YEUNG M K, CHAN A S, et al. Effortful control and prefrontal cortex functioning in children with autism spectrum disorder: an fNIRS study[J]. Brain Sci, 2020, 10(11): 880. doi: 10.3390/brainsci10110880
|
[30] |
RAHKO J S, VUONTELA V A, CARLSON S, et al. Attention and working memory in adolescents with autism spectrum disorder: a functional MRI study[J]. Child Psychiatry Hum Dev, 2016, 47(3): 503-517. doi: 10.1007/s10578-015-0583-6
|
[31] |
LEMIRE-RODGER S, LAM J, VIVIANO J D, et al. Inhibit, switch, and update: a within-subject fMRI investigation of executive control[J]. Neuropsychologia, 2019, 132: 107134. doi: 10.1016/j.neuropsychologia.2019.107134
|
[32] |
BORRÀS-FERRÍS L, PÉREZ-RAMÍREZ Ù, MORATAL D. Link-level functional connectivity neuroalterations in autism spectrum disorder: a developmental resting-state fMRI study[J]. Diagnostics (Basel), 2019, 9(1): 32. doi: 10.3390/diagnostics9010032
|
[33] |
TAYLOR M J, DONNER E J, PANG E W. fMRI and MEG in the study of typical and atypical cognitive development[J]. Neurophysiol Clin, 2012, 42(1/2): 19-25.
|
[34] |
UDDIN L Q. Brain mechanisms supporting flexible cognition and behavior in adolescents with autism spectrum disorder[J]. Biol Psychiatry, 2021, 89(2): 172-183. doi: 10.1016/j.biopsych.2020.05.010
|
[35] |
ZHU H, LI J, FAN Y, et al. Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): a functional near-infrared spectroscopy study[J]. Biomed Opt Express, 2015, 6(3): 690-701. doi: 10.1364/BOE.6.000690
|
[36] |
MOHR H M, GOEBEL R, LINDEN D E J. Content- and task-specific dissociations of frontal activity during maintenance and manipulation in visual working memory[J]. J Neurosci, 2006, 26(17): 4465-4471. doi: 10.1523/JNEUROSCI.5232-05.2006
|
[37] |
SHAFRITZ K M, BREGMAN J D, IKUTA T, et al. Neural systems mediating decision-making and response inhibition for social and nonsocial stimuli in autism[J]. Prog Neuro Psychopharmacol Biol Psychi, 2015, 60: 112-120. doi: 10.1016/j.pnpbp.2015.03.001
|
[38] |
VOGAN V M, FRANCIS K E, MORGAN B R, et al. Load matters: neural correlates of verbal working memory in children with autism spectrum disorder[J]. J Neurodev Disord, 2018, 10(1): 19. doi: 10.1186/s11689-018-9236-y
|
[39] |
VOGAN V M, MORGAN B R, LEE W, et al. The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: effects of cognitive load[J]. J Neurodev Disord, 2014, 6(1): 19. doi: 10.1186/1866-1955-6-19
|
[40] |
VARA A S, PANG E W, DOYLE-THOMAS K A R, et al. Is inhibitory control a 'no-go'in adolescents with autism spectrum disorder?[J]. Mol Autism, 2014, 5(1): 16. doi: 10.1186/2040-2392-5-16
|
[41] |
ALBAJARA SÁENZ A, SEPTIER M, VAN SCHUERBEEK P, et al. ADHD and ASD: distinct brain patterns of inhibition-related activation?[J]. Transl Psychiatry, 2020, 10(1): 24. doi: 10.1038/s41398-020-0707-z
|
[42] |
ZHANG Z, PENG P, ZHANG D. Executive function in high-functioning autism spectrum disorder: a Meta-analysis of fMRI studies[J]. J Autism Dev Disord, 2020, 50(11): 4022-4038. doi: 10.1007/s10803-020-04461-z
|
[43] |
ZHANG Z, PENG P, EICKHOFF S B, et al. Neural substrates of the executive function construct, age-related changes, and task materials in adolescents and adults: ALE Meta-analyses of 408 fMRI studies[J]. Dev Sci, 2021, 24(6): e13111. doi: 10.1111/desc.13111
|
[44] |
ROY Y, FAUBERT J. Is the contralateral delay activity(CDA) a robust neural correlate for visual working memory(VWM) tasks? A reproducibility study[J]. Psychophysiology, 2023, 60(2): e14180. doi: 10.1111/psyp.14180
|
[45] |
BRINKERT J. Perceptual and cognitive load in autism: an electrophysiological and behavioural approach[D]. London: University College London, 2021.
|
[46] |
AUDRAIN S P, URBAIN C M, YUK V, et al. Frequency-specific neural synchrony in autism during memory encoding, maintenance and recognition[J]. Brain Commun, 2020, 2(2): fcaa094. doi: 10.1093/braincomms/fcaa094
|
[47] |
CAÑIGUERAL R, PALMER J, ASHWOOD K L, et al. Alpha oscillatory activity during attentional control in children with autism spectrum disorder (ASD), attention: deficit/hyperactivity disorder (ADHD), and ASD+ ADHD[J]. J Child Psychol Psychiatry, 2022, 63(7): 745-761. doi: 10.1111/jcpp.13514
|
[48] |
KLIMESCH W. Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis[J]. Brain Res, 2011, 1408: 52-71. doi: 10.1016/j.brainres.2011.06.003
|
[49] |
LIEBE S, HOERZER G M, LOGOTHETIS N K, et al. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance[J]. Nat Neurosci, 2012, 15(3): 456-462. doi: 10.1038/nn.3038
|
[50] |
ESCHMANN K C J, BADER R, MECKLINGER A. Topographical differences of frontal-midline theta activity reflect functional differences in cognitive control abilities[J]. Brain Cogn, 2018, 123: 57-64. doi: 10.1016/j.bandc.2018.02.002
|
[51] |
MOLIADZE V, BRODSKI-GUERNIERO A, SCHUETZ M, et al. Significance of beta-band oscillations in autism spectrum disorders during motor response inhibition tasks: aMEG study[J]. Brain Topogr, 2020, 33(3): 355-374. doi: 10.1007/s10548-020-00765-6
|
[52] |
YUK V, URBAIN C, ANAGNOSTOU E, et al. Frontoparietal network connectivity during an N-back task in adults with autism spectrum disorder[J]. Front Psychiatry, 2020, 11: 551808. doi: 10.3389/fpsyt.2020.551808
|