Effects of cardiorespiratory fitness on physical activity and cardiometabolic health among obese adolescents
-
摘要:
目的 探讨心肺适能(CRF)在肥胖青少年体力活动与心血管代谢健康间的作用,以期为肥胖青少年的健康促进提供科学依据。 方法 分别于2021年与2022年的7—8月,招募封闭式减肥训练营中的140名10~17岁肥胖青少年为研究对象,采用ActiGraph GT3X+三轴运动加速度计测量肥胖青少年久坐行为(SB)、低强度体力活动(LPA)、总身体活动(TPA)及中高强度体力活动(MVPA)时间,使用20 m折返跑测定CRF水平。测量肥胖青少年包括腰围(WC)、矢状腹径(SAD)、收缩压(SBP)、舒张压(DBP)、平均血压(ABP)、空腹胰岛素(FINs)、空腹血糖(FPG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)在内的心血管代谢健康指标构建心血管代谢风险Z评分(CMR-Z),采用SPSS Process插件进行中介效应分析。 结果 肥胖青少年的心血管健康指标中,WC、SAD、SBP、DBP、ABP、FINs、FPG、TC、HDL-C、CMR-Z分别为(93.21±11.51)cm、(21.77±2.71)cm、(111.24±11.86)mmHg、(66.08±9.03)mmHg、(88.66±8.97)mmHg、(8.98±6.42)μU/mL、(4.42±0.62)mmol/L、(4.43±0.97)mmol/L、(1.29±0.28)mmol/L、-0.43(-1.83,1.78)分;每日体力活动行为指标中,SB、LPA、MVPA、TPA时长分别为(345.16±78.47,267.35±62.65,64.77±39.52,677.30±57.63)min,SB、LPA、MVPA占比分别为50.96%,39.47%和9.56%;CRF指标VO2max为(37.95±4.96)mL/(kg·min)。中介分析结果显示,肥胖青少年CRF在LPA和腰高比(WHtR)间起完全中介作用,占比为44.2%;在LPA和ABP间起遮掩效应,占比为31.5%;在MVPA和SAD间起遮掩效应,占比为43.2%;在MVPA和CMR-Z间起遮掩效应,占比为96.0%。 结论 CRF可能是体力活动与肥胖青少年心血管代谢健康间的重要影响因素,提高CRF水平有利于促进肥胖青少年心血管代谢健康。 Abstract:Objective To explore the effect of cardiorespiratory fitness (CRF) on cardiometabolic health and physical activity among obese adolescents, in order to provide a scientific basis for health promotion of obese adolescents. Methods From July to August 2021 and 2022, 140 obese adolescents aged 10-17 were recruited in a residential weight-loss camp. Sedentary behavior (SB), low intensity physical activity (LPA), total physical activity (TPA) and moderate-to-vigorous physical activity (MVPA) were measured by ActiGraph GT3X+ triaxial motion accelerometer, and CRF levels were measured by 20-meter shuttle run test. Cardiometabolic risk Z score (CMR-Z) was constructed by measuring the cardiometabolic health indicators of obese adolescents, including waist circumference (WC), sagittal abdominal diameter (SAD), systolic blood pressure (SBP), diastolic blood pressure (DBP), average blood pressure (ABP), fasting insulin (FINs), fasting plasma glucose (FPG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C). The mediating effect analysis was conducted by using the SPSS Process plug-in compiled. Results Cardiovascular health indicators WC, SAD, SBP, DBP, ABP, FINs, FPG, TC, HDL-C and CMR-Z were (93.21±11.51)cm, (21.77±2.71)cm, (111.24±11.86)mmHg, (66.08±9.03)mmHg and (88.66±8.97)mmHg, (8.98±6.42)μU/mL, (4.42±0.62)mmol/L, (4.43±0.97)mmol/L, (1.29±0.28)mmol/L, -0.43(-1.83, 1.78)min, respectively. In the daily activity behavior indicators, the duration of SB, LPA, MVPA and TPA were (345.16±78.47, 267.35±62.65, 64.77±39.52, 677.30±57.63)min, respectively. SB, LPA and MVPA accounted for 50.96%, 39.47% and 9.56%, respectively. The indicator VO2max of CRF was (37.95±4.96)mL/(kg · min). Mediation analysis showed that CRF played a fully mediating role between LPA and waist-to-height ratio (WHtR), accounting for 44.2%. It exhibited a suppressing effect between LPA and ABP accounting for 31.5%, with a suppressing effect between MVPA and SAD accounting for 43.2% and a suppressing effect between MVPA and CMR-Z accounting for 96.0%. Conclusions CRF may be an important factor in the relationship between physical activity and cardiometabolic health of obese adolescents. Improving CRF level may be conducive to promoting cardiometabolic health of obese adolescents. -
Key words:
- Cardiopulmonary fitness /
- Obesity /
- Motor activity /
- Cardiovascular system /
- Adolescent
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 肥胖青少年PA、CRF与心血管代谢参数的相关性(r值,n=140)
Table 1. Correlation of PA, CRF and cardiometabolic parameters of obese adolescents(r, n=140)
变量 WC SAD WHtR ABP FINs FPG TC TG HDL-C CMR-Z CRF SB LPA SAD 0.66** WHtR 0.89** 0.56** ABP 0.38** 0.38** 0.30** FINs 0.39** 0.40** 0.23** 0.34** FPG 0.05 0.27** 0.03 0.17* 0.34** TC 0.27** 0.35** 0.36** 0.22** 0.47** 0.25** TG 0.05 0.16 0.01 0.07 0.20* 0.09 0.39** HDL-C -0.34** -0.26** -0.27** -0.22** -0.24** -0.02 -0.31** 0.17 CMR-Z 0.65** 0.60** 0.56** 0.58** 0.71** 0.52** 0.28** 0.70** -0.54** CRF -0.58** -0.48** -0.71** -0.36** -0.36** -0.07 -0.37** -0.05 0.30** -0.52** SB -0.01 -0.27** -0.06 0.31** -0.01 -0.31* 0.06 0.01 -0.06 0.19 -0.09 LPA -0.03 0.11 0.48** -0.19* 0.02 0.29** 0.02 0.10 0.11 0.07 -0.23** -0.55** MVPA -0.02 0.36** -0.04 -0.12 -0.05 0.38** -0.02 -0.05 0.05 0.21** 0.19** -0.61** 0.18* 注:*P < 0.05,**P < 0.01。 -
[1] CHEN P. Physical activity, physical fitness, and body mass index in the Chinese child and adolescent populations: an update from the 2016 physical activity and fitness in China: the youth study[J]. J Sport Health Sci, 2017, 6(4): 381-383. doi: 10.1016/j.jshs.2017.09.011 [2] CHEN P, WANG D, SHEN H, et al. Physical activity and health in Chinese children and adolescents: expert consensus statement (2020)[J]. Br J Sports Med, 2020, 54(22): 1321-1331. doi: 10.1136/bjsports-2020-102261 [3] KODAMA S, SAITO K, TANAKA S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a Meta-analysis[J]. JAMA, 2009, 301(19): 2024-2035. doi: 10.1001/jama.2009.681 [4] ROSS R, BLAIR S N, ARENA R, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign. A scientific statement from the American Heart Association[J]. Circulation, 2016, 134(24): e653-e699. http://pubmed.ncbi.nlm.nih.gov/27881567/ [5] 陈泽恺, 朱琳, 李展权, 等. 中高强度身体活动量与肥胖儿童青少年心肺适能改善的剂量-效应关系研究[J]. 中国运动医学杂志, 2022, 41(9): 687-693. doi: 10.3969/j.issn.1000-6710.2022.09.004CHEN Z K, ZHU L, LI Z Q, et al. Dose-response relationship between moderate to vigorous physical activities of and cardiorespiratory fitness of obese children and adolescents[J]. Chin J Sports Med, 2022, 41(9): 687-693. (in Chinese) doi: 10.3969/j.issn.1000-6710.2022.09.004 [6] JACKSON R E, LANG W, ROGERS R J, et al. Accumulated physical activity and the association with obesity, fitness, and cardiometabolic risk factors in healthy adults[J]. Obesity (Silver Spring), 2024, 32(1): 23-31. doi: 10.1002/oby.23890 [7] STEELE R M, BRAGE S, CORDER K, et al. Physical activity, cardiorespiratory fitness, and the metabolic syndrome in youth[J]. J Appl Physiol, 2008, 105(1): 342-351. doi: 10.1152/japplphysiol.00072.2008 [8] ANDERSSEN S A, COOPER A R, RIDDOCH C, et al. Low cardiorespiratory fitness is a strong predictor for clustering of cardiovascular disease risk factors in children independent of country, age and sex[J]. Eur J Cardiovasc Prev Rehabil, 2007, 14(4): 526-531. doi: 10.1097/HJR.0b013e328011efc1 [9] 蒋家诺, 张奕, 陈力, 等. 儿童青少年生命早期因素与心血管代谢风险的关联[J]. 中国学校卫生, 2023, 44(10): 1454-1458. doi: 10.16835/j.cnki.1000-9817.2023.10.004 JIANG J N, ZHANG Y, CHEN L, et al. Association between early-life factors and cardiometabolic risk factors in children and adolescents[J]. Chin J Sch Health, 2023, 44(10): 1454-1458. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2023.10.004 [10] TABACHNICK B G, FIDELL L S. Using multivariate statistics[M]. 5th ed. Boston, MA: Pearson, 2007: 980. [11] 中华人民共和国国家卫生和计划生育委员会. 学龄儿童青少年超重与肥胖筛查: WS/T 586—2018[S]. 北京: 中国标准出版社, 2018.National Health and Family Planning Commission of the PRC. Screening of overweight and obesity in school-age children and adolescents: WS/T 586-2018[S]. Beijing: Standards Press of China, 2018. (in Chinese) [12] LI C, HARRIS M, TSILIMINGRAS D, et al. Sagittal abdominal diameter and its socioeconomic correlates: perspective of sex differences[J]. BMC Public Health, 2021, 21(1): 486. doi: 10.1186/s12889-020-09805-z [13] MOURA B P, RUFINO R L, FARIA R C, et al. Effects of isotemporal substitution of sedentary behavior with light-intensity or moderate-to-vigorous physical activity on cardiometabolic markers in male adolescents[J]. PLoS One, 2019, 14(11): e0225856. doi: 10.1371/journal.pone.0225856 [14] WHITAKER K M, PETTEE GABRIEL K, BUMAN M P, et al. Associations of accelerometer-measured sedentary time and physical activity with prospectively assessed cardiometabolic risk factors: the CARDIA study[J]. J Am Heart Assoc, 2019, 8(1): e010212. doi: 10.1161/JAHA.118.010212 [15] CAO Y, ZHU L, CHEN Z, et al. The effect of different intensity physical activity on cardiovascular metabolic health in obese children and adolescents: an isotemporal substitution model[J]. Front Physiol, 2023, 14: 1041622. doi: 10.3389/fphys.2023.1041622 [16] ANDERSEN L B, HARRO M, SARDINHA L B, et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (the European Youth Heart Study)[J]. Lancet, 2006, 368(9532): 299-304. doi: 10.1016/S0140-6736(06)69075-2 [17] MARTINEZ -VIZCAÍNO V, MARTINEZ M S, AGUILAR F S, et al. Validity of a single-factor model underlying the metabolic syndrome in children: a confirmatory factor analysis[J]. Diabetes Care, 2010, 33(6): 1370-1372. doi: 10.2337/dc09-2049 [18] MAHARM T, GUERERI A M, HANNA M S, et al. Estimation of aerobic fitness from 20-m multistage shuttle run test performance[J]. Am J Prev Med, 2011, 41(4 Suppl 2): S117-S123. [19] 刘景新, 朱琳, 徐佶, 等. 肥胖儿童青少年运动强度的多指标联合诊断标准及价值[J]. 上海体育学院学报, 2021, 45(10): 54-61.LIU J X, ZHU L, XU J, et al. Diagnostic criteria and value of multiple-index joint diagnosis of exercise intensity in obese children and adolescents[J]. J Shanghai Univ Sport, 2021, 45(10): 54-61. (in Chinese) [20] HAYES A F. Introduction to mediation, moderation, and conditional process analysis: a regression based approach[M]. Washington DC: Guilford Press, 2013. [21] 温忠麟, 叶宝娟. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731-745.WEN Z L, YE B J. Analyses of mediating effects: the development of methods and models[J]. Adv Psychol Sci, 2014, 22(5): 731-745. (in Chinese) [22] CHASTIN S F M, MCGREGOR D E, BIDDLE S J H, et al. Striking the right balance: evidence to inform combined physical activity and sedentary behavior recommendations[J]. J Phys Act Health, 2021, 18(6): 631-637. doi: 10.1123/jpah.2020-0635 [23] BARKER A R, GRACIA-MARCO L, RUIZ J R, et al. Physical activity, sedentary time, TV viewing, physical fitness and cardiovascular disease risk in adolescents: the HELENA study[J]. Int J Cardiol, 2018, 254: 303-309. doi: 10.1016/j.ijcard.2017.11.080 [24] REYES-FERRADA W, SOLIS-URRA P, PLAZA-DÍAZ J, et al. Cardiorespiratory fitness, physical activity, sedentary time and its association with the atherogenic index of plasma in Chilean adults: influence of the waist circumference to height ratio[J]. Nutrients, 2020, 12(5): 1250. doi: 10.3390/nu12051250 [25] GASTON S A, TULVE N S, FERGUSON T F. Abdominal obesity, metabolic dysfunction, and metabolic syndrome in U.S. adolescents: national health and nutrition examination survey 2011-2016[J]. Ann Epidemiol, 2019, 30: 30-36. doi: 10.1016/j.annepidem.2018.11.009 [26] PLATT C, HOUSTIS N, ROSENZWEIG A. Using exercise to measure and modify cardiac function[J]. Cell Metab, 2015, 21(2): 227-236. doi: 10.1016/j.cmet.2015.01.014 [27] CHE L, LI D. The effects of exercise on cardiovascular biomarkers: new insights, recent data, and applications[J]. Adv Exp Med Biol, 2017, 999: 43-53. [28] BOOTH F W, ROBERTS C K, LAYE M J. Lack of exercise is a major cause of chronic diseases[J]. Compr Physiol, 2012, 2(2): 1143-1211. [29] DÍEZ-FERNÁNDEZ A, SÁNCHEZ-LÓPEZ M, MORA-RODRÍGUE Z R, et al. Obesity as a mediator of the influence of cardiorespiratory fitness on cardiometabolic risk: a mediation analysis[J]. Diabetes Care, 2014, 37(3): 855-862. doi: 10.2337/dc13-0416 [30] 赵之光, 陈浩, 张倩, 等. 运动相关心血管事件风险的评估与监测中国专家共识[J]. 中国循环杂志, 2022, 37(7): 659-668. doi: 10.3969/j.issn.1000-3614.2022.07.002ZHAO Z G, CHEN H, ZHANG Q, et al. Chinese expert consensus on evaluation and monitoring of exercise related cardiovascular risk[J]. Chin Circul J, 2022, 37(7): 659-668. (in Chinese) doi: 10.3969/j.issn.1000-3614.2022.07.002 -

表(1)
计量
- 文章访问数: 122
- HTML全文浏览量: 65
- PDF下载量: 16
- 被引次数: 0