留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江苏省学校饮用水中三氯甲烷健康风险评估

费娟 于洋 郑浩 丁震

费娟, 于洋, 郑浩, 丁震. 江苏省学校饮用水中三氯甲烷健康风险评估[J]. 中国学校卫生, 2024, 45(11): 1653-1656. doi: 10.16835/j.cnki.1000-9817.2024348
引用本文: 费娟, 于洋, 郑浩, 丁震. 江苏省学校饮用水中三氯甲烷健康风险评估[J]. 中国学校卫生, 2024, 45(11): 1653-1656. doi: 10.16835/j.cnki.1000-9817.2024348
FEI Juan, YU Yang, ZHENG Hao, DING Zhen. Health risk assessment of trichlormethane in school drinking water of Jiangsu Province[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(11): 1653-1656. doi: 10.16835/j.cnki.1000-9817.2024348
Citation: FEI Juan, YU Yang, ZHENG Hao, DING Zhen. Health risk assessment of trichlormethane in school drinking water of Jiangsu Province[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(11): 1653-1656. doi: 10.16835/j.cnki.1000-9817.2024348

江苏省学校饮用水中三氯甲烷健康风险评估

doi: 10.16835/j.cnki.1000-9817.2024348
基金项目: 

国家疾病预防控制局综合司2023年度疾病预防控制标准项目计划 JK20230408

详细信息
    作者简介:

    费娟(1986-),女,江苏淮安人,硕士,副主任医师,主要从事饮用水卫生工作

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: G478 R123 TU991.25

Health risk assessment of trichlormethane in school drinking water of Jiangsu Province

  • 摘要:   目的  了解江苏省学校饮用水中三氯甲烷分布特征,评价三氯甲烷健康风险及其影响因素,为学校饮用水消毒安全工作提供科学依据。  方法  采用分层抽样方法抽取江苏省315所学校(123所小学、142所初中、20所高中、30所大学),每所学校于2023年丰水期(7—9月),2024年枯水期(1—3月)各采集末梢水1份,共采集末梢水630份。采用《生活饮用水标准检验方法》(GB/T 5750—2023)要求检测学校饮用水中三氯甲烷质量浓度,采用美国环保局推荐的健康风险评价方法对学生暴露三氯甲烷健康风险进行评估,采用Kruskal-Wallis H秩和检验和Mann-Whitney U检验比较不同分组学校饮用水中三氯甲烷水平及健康风险。  结果  江苏省学校饮用水中三氯甲烷均达标,质量浓度为8.9(4.6,14.0)μg/L。学校饮用水中三氯甲烷致癌风险为9.8×10-6(5.3×10-6,1.7×10-5),为可接受的低风险。不同学段学生单位体重饮水量、学校末梢水中三氯甲烷质量浓度是影响学生饮水暴露三氯甲烷致癌风险的重要因素,学生饮水暴露三氯甲烷致癌风险比较:低学段小学生致癌风险最高,致癌风险为1.2×10-5,丰水期(1.3×10-5)高于枯水期(7.6×10-6)、江河水源水(1.0×10-5)高于湖泊水源水(6.8×10-6),液氯消毒(1.1×10-5)高于次氯酸钠消毒(9.3×10-6),常规处理工艺(1.4×10-5)高于深度处理工艺(9.6×10-6),差异均有统计学意义(Z值分别为88.1,3.7,-3.2,-2.7,P值均 < 0.05)。学校饮用水中三氯甲烷非致癌风险为1.4×10-2,小于1,非致癌风险可接受。  结论  江苏省学生饮水暴露三氯甲烷致癌风险、非致癌风险均在可接受范围内,低学段小学生饮水暴露三氯甲烷致癌风险最高,应列为重点关注对象。同时应根据水源水特质选择合适的消毒方式和水处理工艺,降低学校饮用水中三氯甲烷含量,控制健康风险。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • 表  1  不同组别学校饮用水三氯甲烷质量浓度比较[M (P25, P75), μg/L]

    Table  1.   Comparison of chloroform concentration in drinking water of different groups of schools [M (P25, P75), μg/L]

    组别 选项 学校数 质量浓度 Z/H P
    学段 小学低年级 123 8.4(4.6, 14.3) 8.6 < 0.05
    小学高年级 123 8.4(4.6, 14.3)
    初中 142 9.7(5.0, 14.6)
    高中 20 10.0(5.0, 15.0)
    大学 30 7.0(4.1, 10.3)
    城乡 城市 138 8.6(5.0, 12.9) -0.9 0.36
    农村 177 9.0(4.0, 15.1)
    水期 枯水期 315 8.0(4.0, 13.0) -3.5 < 0.01
    丰水期 315 10.0(4.7, 11.0)
    水源类型 江河 262 9.0(5.0, 14.7) 6.7 < 0.05
    湖泊 36 7.0(2.6, 12.0)
    水库 17 9.4(5.3, 12.5)
    消毒方式 次氯酸钠 184 8.6(4.4, 13.0) 7.9 < 0.05
    液氯 119 9.6(5.1, 16.0)
    复合二氧化氯 6 7.3(1.0, 12.6)
    一氯胺 6 7.6(0.7, 17.5)
    水处理工艺 深度处理 295 8.6(4.5, 14.0) -2.2 < 0.05
    常规处理 20 11.0(7.2, 16.1)
    下载: 导出CSV

    表  2  不同分组学校饮用水中三氯甲烷健康风险评估

    Table  2.   Health risks of trichloromethane in different subgroups in school drinking water

    组别 选项 学校数 致癌风险 非致癌风险
    M(P25P75)/10-6 Z/χ2 P M(P25P75)/10-2 Z/χ2 P
    学段 小学低年级 123 11.6(6.2,21.9) 26.8 < 0.01 1.6(0.9,3.0) 26.8 < 0.01
    小学高年级 123 9.6(5.1,16.9) 1.3(0.7,2.3)
    初中 142 8.4(4.7,13.6) 1.2(0.7,1.9)
    高中 20 10.5(6.6,16.9) 1.5(0.9,2.3)
    大学 30 9.0(5.5,13.9) 1.2(0.8,1.9)
    城乡 城市 138 9.2(5.8,15.1) -1.0 0.31 1.3(0.8,2.1) -1.0 0.31
    农村 177 10.0(4.8,18.0) 1.4(0.7,2.5)
    水期 枯水期 315 7.6(4.3,12.8) 88.1 < 0.01 1.1(0.6,1.8) 88.1 < 0.01
    丰水期 315 13.2(7.1,22.5) 1.8(1.0,3.1)
    水源类型 江河 262 10.0(5.5,17.3) 14.0 < 0.01 1.4(0.8,2.4) 14.0 < 0.01
    湖泊 36 6.8(2.9,13.7) 0.9(0.3,18.9)
    水库 17 10.0(6.7,13.0) 1.4(0.9,1.8)
    消毒方式 次氯酸钠 184 9.3(4.9,15.0) 10.1 0.02 1.3(0.7,2.1) 10.1 0.02
    液氯 119 10.6(5.8,18.9) 1.5(0.8,2.6)
    复合二氧化氯 6 10.0(3.4,19.4) 1.4(0.5,2.7)
    一氯胺 6 10.7(1.6,24.8) 1.4(0.2,3.4)
    水处理工艺 深度处理 295 9.6(5.1,16.0) -2.7 < 0.01 1.3(0.7,2.2) -2.7 < 0.01
    常规处理 20 13.8(7.9,20.6) 1.9(1.1,2.9)
    下载: 导出CSV
  • [1] NHAMO C, SAVIA S M, WELLDONE M, et al. Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water: a review[J]. J Environ Chem Eng, 2020, 8(2): 103659. doi: 10.1016/j.jece.2020.103659
    [2] KELLY-COTO D E, GAMBOA-JIMÉNEZ A, MORA-CAMPOS D, et al. Modeling the formation of trihalomethanes in rural and semi-urban drinking water distribution networks of Costa Rica[J]. Environ Sci Pollut R, 2022, 29(22): 32845-32854. doi: 10.1007/s11356-021-18299-0
    [3] EVLAMPIDOU I, FONTRIBERA L, ROJASRUEDA D, et al. Trihalomethanes in drinking water and bladder cancer burden in the European union[J]. Environ Health Perspect, 2020, 128(1): 017001. doi: 10.1289/EHP4495
    [4] VILLANUEVA C M, GRACIA-LAVEDAN E, BOSETTI C, et al. Colorectal cancer and long-term exposure to trihalomethanes in drinking water: a multicenter case-control study in Spain and Italy[J]. Environ Health Perspect, 2017, 125: 56-65. doi: 10.1289/EHP155
    [5] WHO. Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda[M]. Geneva: WHO, 2022.
    [6] 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2022[S]. 北京: 中国标准出版社, 2022.

    State Administration for Market Regulation, Standardization Administration of the PRC. Standards for drinking water quality: GB 5749-2022[S]. Beijing: China Standards Press, 2022. (in Chinese)
    [7] LI R A, MCDONALD J A, SATHASIVAN A, et al. A multivariate Bayesian network analysis of water quality factors influencing trihalomethanes formation in drinking water distribution systems[J]. Water Res, 2021, 190: 116712. doi: 10.1016/j.watres.2020.116712
    [8] 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水标准检验方法: GB/T 5750—2023[S]. 北京: 中国标准出版社, 2023.

    State Administration for Market Regulation, Standardization Administration of the PRC. Standard examination methods for drinking water: GB/T 5750-2023[S]. Beijing: China Standards Press, 2023. (in Chinese)
    [9] U.S. Environmental Protection Agency. Risk assessment guidance for superfund volume Ⅰ: human health evaluation manual (Part A): EPA/540/1-89/002[S]. Washington, D. C. : Office of Emergency and Remedial Response, 1989.
    [10] DU Y J, ZHAO L, BAN J, et al. Cumulative health risk assessment of disinfection by-products in drinking water by different disinfection methods in typical regions of China[J]. Sci Total Environ, 2021, 770: 144662. doi: 10.1016/j.scitotenv.2020.144662
    [11] 中华人民共和国环境保护部. 中国人群暴露参数手册(儿童卷: 6~17岁)[M]. 北京: 中国环境出版社, 2016.

    Ministry of Environmental Protection of the PRC. Exposure factors handbook of Chinese population(child: 6-17 years)[M]. Beijing: Environment Press, 2016. (in Chinese)
    [12] 中华人民共和国环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2014.

    Ministry of Environmental Protection of the PRC. Exposure factors handbook of Chinese population(Adults)[M]. Beijing: China Environment Press, 2014. (in Chinese)
    [13] LEGAY C, RODRIGUEZ MJ, SADIQ R, et al. Spatial variations of human health risk associated with exposure to chlorination by-products occurring in drinking water[J]. J Environ Manage, 2011, 92(3): 892-901. doi: 10.1016/j.jenvman.2010.10.056
    [14] RADWAN E K, BARAKAT M H, IBRAHIMM B M. Hazardous in organic disinfection by-products in Egypt's tap drinking water: occurrence and human health risks assessment studies[J]. Sci Total Environ, 2021, 797: 149069 doi: 10.1016/j.scitotenv.2021.149069
    [15] U.S. Environmental Protection Agency. Toxicological review of chlorofrom: EPA/635/R-01/001[S]. Washington, D. C. : Office of Science and Technology, 2001.
    [16] 张磊, 胡海娟, 张可欣, 等. 天津市农村中小学校饮用水中三氯甲烷含量及健康风险评估[J]. 中国学校卫生, 2024, 45(6): 784-787. doi: 10.16835/j.cnki.1000-9817.2024177

    ZHANG L, HU H J, ZHANG K X, et al. Concentration and health risk assessment of trichloromethane in drinking water for rural primary and middle school students in Tianjin[J]. Chin J Sch Health, 2024, 45(6): 784-787. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2024177
    [17] DU Y J, ZHAO L, BAN J, et al. Cumulative health risk assessment of disinfection by-products in drinking water by different disinfection methods in typical regions of China[J]. Sci Total Environ, 2021, 770: 144662. doi: 10.1016/j.scitotenv.2020.144662
    [18] AWAD J, VAN LEEUWEN J, CHOW C W K, et al. Seasonal variation in the nature of DOM in a river and drinking water reservoir of a closed catchment[J]. Environ Pollut, 2017, 220: 788-796. doi: 10.1016/j.envpol.2016.10.054
    [19] HONG H C, QIAN L Y, XIONG Y J, et al. Use of multiple regression models to evaluate the formation of halonitromethane via chlorination/chloramination of water from Tai Lake and the Qiantang River, China[J]. Chemosphere, 2015, 119: 540-546. doi: 10.1016/j.chemosphere.2014.06.084
    [20] 郭杨, 林国峰, 熊正龙. 江苏省供水安全保障工作探索及实践[J]. 江苏建筑, 2019(1): 112-114.

    GUO Y, LIN G F, XIONG Z L. Exploration and practice for water supply security in Jiangsu Province[J]. Jiangsu Constr, 2019(1): 112-114. (in Chinese)
    [21] 周闰, 杨丽, 吴宇伉, 等. 无锡市不同生活饮用水中两类消毒副产物三卤甲烷及卤乙酰胺的浓度比较[J]. 环境与职业医学, 2023, 40(4): 456-461.

    ZHOU R, YANG L, WU Y K, et al. Trihalomethanes and haloacetamides as disinfection by-products in different types of drinking water of Wuxi[J]. J Environ Occup Med, 2023, 40(4): 456-461. (in Chinese)
    [22] 张楷立, 林大瑛, 邱楚茵, 等. 家庭常用处理方法控制氯化消毒饮用水中消毒副产物的研究进展[J]. 净水技术, 2021, 40(7): 60-70.

    ZHANG K L, LIN D Y, QIU C Y, et al. Review of household drinking water treatment with DBPs control for chlorinated tap water[J]. Water Purif Technol, 2021, 40(7): 60-70. (in Chinese)
  • 加载中
表(2)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  71
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-05
  • 修回日期:  2024-09-25
  • 网络出版日期:  2024-12-10
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回