留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生命早期因素对肠道菌群与儿童肥胖的影响及干预研究进展

夏志伟 宫照龙 孙静 郭欣 李岩 霍军生

夏志伟, 宫照龙, 孙静, 郭欣, 李岩, 霍军生. 生命早期因素对肠道菌群与儿童肥胖的影响及干预研究进展[J]. 中国学校卫生, 2024, 45(11): 1657-1662. doi: 10.16835/j.cnki.1000-9817.2024314
引用本文: 夏志伟, 宫照龙, 孙静, 郭欣, 李岩, 霍军生. 生命早期因素对肠道菌群与儿童肥胖的影响及干预研究进展[J]. 中国学校卫生, 2024, 45(11): 1657-1662. doi: 10.16835/j.cnki.1000-9817.2024314
XIA Zhiwei, GONG Zhaolong, SUN Jing, GUO Xin, LI Yan, HUO Junsheng. Research progress on the impact and intervention of early life factors on gut microbiota and childhood obesity[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(11): 1657-1662. doi: 10.16835/j.cnki.1000-9817.2024314
Citation: XIA Zhiwei, GONG Zhaolong, SUN Jing, GUO Xin, LI Yan, HUO Junsheng. Research progress on the impact and intervention of early life factors on gut microbiota and childhood obesity[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(11): 1657-1662. doi: 10.16835/j.cnki.1000-9817.2024314

生命早期因素对肠道菌群与儿童肥胖的影响及干预研究进展

doi: 10.16835/j.cnki.1000-9817.2024314
基金项目: 

国家重点研发计划项目 2020YFC2006301

国家财政资助项目 102393220020070000016

详细信息
    作者简介:

    夏志伟(1989-),男,安徽铜陵人,在读博士,主管医师,主要研究方向为儿童青少年营养健康

    通讯作者:

    霍军生,E-mail: huojs@ninh.chinacdc.cn

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R179 R723.14 R714.14+6

Research progress on the impact and intervention of early life factors on gut microbiota and childhood obesity

  • 摘要: 儿童肥胖是全球重大的公共卫生挑战之一,对儿童青少年的身心健康具有深远影响。文章综述生命早期肠道菌群的建立及早期营养状况与喂养方式、母婴菌群交换、分娩方式和抗菌药物使用等因素对肠道菌群及儿童肥胖的影响,重点探讨利用肠道菌群结构特征(基因丰富度和均匀度、细菌相对丰度比例及关键指示菌)作为肥胖儿童干预的潜在靶点和预测因子的可能性,并总结益生菌等生物制剂及肠道粪便转移在儿童肥胖干预中的应用及肠道菌群与儿童肥胖发生机制的最新进展,从而为精准防控儿童肥胖提供参考。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • [1] World Health Organization. Obesity and overweight[EB/OL]. (2022-09-30)[2024-06-30]. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
    [2] JEBEILE H, KELLY A S, O'MALLEY G, et al. Obesity in children and adolescents: epidemiology, causes, assessment, and management[J]. Lancet Diabetes Endocrinol, 2022, 10(5): 351-365. doi: 10.1016/S2213-8587(22)00047-X
    [3] VORUGANTI V S. Precision nutrition: recent advances in obesity[J]. Physiology (Bethesda), 2023, 38(1). DOI: 10.1152/physiol.00014.2022.
    [4] SANKARARAMAN S, NORIEGA K, VELAYUTHAN S, et al. Gut microbiome and its impact on obesity and obesity-related disorders[J]. Curr Gastroenterol Rep, 2023, 25(2): 31-44. doi: 10.1007/s11894-022-00859-0
    [5] MA T, WU Z, LIN J, et al. Characterization of the oral and gut microbiome in children with obesity aged 3 to 5 years[J]. Front Cell Infect Microbiol, 2023, 13: 1102650. doi: 10.3389/fcimb.2023.1102650
    [6] BOSCO A, LOI M. Childhood obesity and the cryptic language of the microbiota: metabolomics' upgrading[J]. Metabolites, 2023, 13(3): 414. doi: 10.3390/metabo13030414
    [7] CUEVILLAS B, MILAGRO F I. Fecal microbiota relationships with childhood obesity: a scoping comprehensive review[J]. Obes Rev, 2022, 23(Suppl 1): e13394.
    [8] YANG Y, CHEN J, GAO H, et al. Characterization of the gut microbiota and fecal and blood metabolomes under various factors in urban children from Northwest China[J]. Front Cell Infect Microbiol, 2024, 14: 1374544. doi: 10.3389/fcimb.2024.1374544
    [9] HOUTMAN T A, ECKERMANN H A, SMIDT H, et al. Gut microbiota and BMI throughout childhood: the role of firmicutes, bacteroidetes, and short-chain fatty acid producers[J]. Sci Rep, 2022, 12(1): 3140. doi: 10.1038/s41598-022-07176-6
    [10] ROTHSCHILD D, WEISSBROD O, BARKAN E, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature, 2018, 555(7695): 210-215. doi: 10.1038/nature25973
    [11] CHEN X, SUN H, JIANG F, et al. Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing[J]. PeerJ, 2020, 8: e8317. doi: 10.7717/peerj.8317
    [12] WANG J, ZHUANG P, LIN B, et al. Gut microbiota profiling in obese children from southeastern China[J]. BMC Pediatr, 2024, 24(1): 193. doi: 10.1186/s12887-024-04668-4
    [13] CHEN L W, XU J, SOH S E, et al. Implication of gut microbiota in the association between infant antibiotic exposure and childhood obesity and adiposity accumulation[J]. Int J Obes (Lond), 2020, 44(7): 1508-1520. doi: 10.1038/s41366-020-0572-0
    [14] STANISLAWSKI M A, DABELEA D, WAGNER B D, et al. Gut, microbiota in the first 2 years of life and the association with body mass index at age 12 in a Norwegian birth cohort[J]. mBio, 2018, 9(5): e01751-18.
    [15] PORRO M, KUNDROTAITE E, MELLOR D D. A narrative review of the functional components of human breast milk and their potential to modulate the gut microbiome, the consideration of maternal and child characteristics, and confounders of breastfeeding, and their impact on risk of obesity later in life[J]. Nutr Rev, 2023, 81(5): 597-609. doi: 10.1093/nutrit/nuac072
    [16] MORGADO M C, SOUSA M. Exploring gut microbiota and the influence of physical activity interventions on overweight and obese children and adolescents: a systematic review[J]. Healthcare (Basel), 2023, 11(17): 2459.
    [17] BORREGO-RUIZ A, BORREGO J J. Human gut microbiome, diet, and mental disorders[J]. Int Microbiol, 2024. DOI: 10.1007/s10123-024-00518-6.
    [18] GARMAEVA S, SINHA T. Transmission and dynamics of mother-infant gut viruses during pregnancy and early life[J]. Nat Commun, 2024, 15(1): 1945. doi: 10.1038/s41467-024-45257-4
    [19] SHAO Y, FORSTER S C, TSALIKI E, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth[J]. Nature, 2019, 574(7776): 117-121. doi: 10.1038/s41586-019-1560-1
    [20] LONG G, HU Y, TAO E, et al. The influence of cesarean section on the composition and development of gut microbiota during the first 3 months of life[J]. Front Microbiol, 2021, 12: 691312. doi: 10.3389/fmicb.2021.691312
    [21] YATSUNENKO T, REY F E, MANARY M J, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402): 222-227. doi: 10.1038/nature11053
    [22] DUPONT H L, SALGE M M H. The importance of a healthy microbiome in pregnancy and infancy and microbiota treatment toreverse dysbiosis for improved health[J]. Antibiotics (Basel), 2023, 12(11): 1617. doi: 10.3390/antibiotics12111617
    [23] GILLEY S P, RUEBEL M L, SIMS C. Associations between maternal obesity and offspring gut microbiome in the first year of life[J]. Pediatr Obes, 2022, 17(9): e12921. doi: 10.1111/ijpo.12921
    [24] AL K F, ALLEN L, BEDELL S, et al. Assessing the impact of pregnancy and birth factors on the maternal and infant microbiota[J]. Microbiom Res Rep, 2023, 2(4): 29.
    [25] DEWEY K G, GÜNGÖR D. Breastfeeding and risk of overweight in childhood and beyond: a systematic review with emphasis on sibling-pair and intervention studies[J]. Am J Clin Nutr, 2021, 114(5): 1774-1790. doi: 10.1093/ajcn/nqab206
    [26] ZHENG M, D'SOUZA N J, ATKINS L, et al. Breastfeeding and thelongitudinal changes of body mass index in childhood and adulthood: a systematic review[J]. Adv Nutr, 2024, 15(1): 100152. doi: 10.1016/j.advnut.2023.100152
    [27] WANG M, PAN W, XU Y, et al. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res, 2022, 15: 3083-3094. doi: 10.2147/JIR.S350109
    [28] TANG M, MARROQUIN E. The role of the gut microbiome in the intergenerational transmission of the obesity phenotype: a narrative review[J]. Front Med (Lausanne), 2022, 9: 1057424.
    [29] TUN H M, BRIDGMAN S L, CHARI R, et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring[J]. JAMA Pediatr, 2018, 172(4): 368-377. doi: 10.1001/jamapediatrics.2017.5535
    [30] BOGAERT D, VAN BEVEREN G J, DE KOFF E M, et al. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites[J]. Cell Host Microbe, 2023, 31(3): 447-460. doi: 10.1016/j.chom.2023.01.018
    [31] CHAVARRO J E, MARTÍN-CALVO N, YUAN C, et al. Association of birth by cesarean delivery with obesity and type 2 diabetes among adult women[J]. JAMA Netw Open, 2020, 3(4): e202605. doi: 10.1001/jamanetworkopen.2020.2605
    [32] DOS SANTOS S J, SHUKLA I, HILL J E. Birth mode does not determine the presence of shared bacterial strains between the maternal vaginal microbiome and the infant stool microbiome[J]. Microbiol Spectr, 2023, 11(4): e0061423. doi: 10.1128/spectrum.00614-23
    [33] BARON R, TAYE M, DER VAART I B, et al. The relationship of prenatal and infant antibiotic exposure with childhood overweight and obesity: a systematic review[J]. J Dev Orig Health Dis, 2020, 11(4): 335-349. doi: 10.1017/S2040174419000722
    [34] VALLIANOU N, DALAMAGA M, STRATIGOU T, et al. Do antibiotics cause obesity through long-term alterations in the gut microbiome? A review of current evidence[J]. Curr Obes Rep, 2021, 10(3): 244-262. doi: 10.1007/s13679-021-00438-w
    [35] UZAN-YULZARI A, TURTA O, BELOGOLOVSKI A, et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization[J]. Nat Commun, 2021, 12(1): 443. doi: 10.1038/s41467-020-20495-4
    [36] MENG X, ZHU Y, DI H, et al. Dose-response association of early-life antibiotic exposure and subsequent overweight or obesity in children: a Meta-analysis of prospective studies[J]. Obes Rev, 2021, 22(11): e13321. doi: 10.1111/obr.13321
    [37] BISANZ J E, UPADHYAY V, TURNBAUGH J A, et al. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet[J]. Cell Host Microbe, 2019, 26(2): 265-272. doi: 10.1016/j.chom.2019.06.013
    [38] WU X, XIA Y, HE F, et al. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities[J]. Microbiome, 2021, 9(1): 60. doi: 10.1186/s40168-021-01024-x
    [39] KIM KN, YAO Y. Short chain fatty acids and fecal microbiota abundance in humans with obesity: a systematic review and Meta-analysis[J]. Nutrients, 2019, 11(10): 2512. doi: 10.3390/nu11102512
    [40] PANNARAJ P S, LI F, CERINI C, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome[J]. JAMA Pediatr, 2017, 171(7): 647-654. doi: 10.1001/jamapediatrics.2017.0378
    [41] KOUTOUKIDIS D A, JEBB S A. The association of weight loss with changes in the gut microbiota diversity, composition, and intestinal permeability: a systematic review and Meta-analysis[J]. Gut Microbes, 2022, 14(1): 2020068. doi: 10.1080/19490976.2021.2020068
    [42] BLIESNER A, ECCLES-SMITH J, BATES C, et al. Impact of food-based weight loss interventions on gut microbiome in individuals with obesity: a systematic review[J]. Nutrients, 2022, 14(9): 1953. doi: 10.3390/nu14091953
    [43] BISCHOFF S C, NGUYEN N K. Gut microbiota patterns predicting long-term weight loss success in individuals with obesity undergoing nonsurgical therapy[J]. Nutrients, 2022, 14(15): 3182. doi: 10.3390/nu14153182
    [44] COSTEA P I, HILDEBRAND F. Enterotypes in the landscape of gut microbial community composition[J]. Nat Microbiol, 2018, 3(1): 8-16.
    [45] ORTEGA-SANTOS C P, WHISNER C M. The key to successful wei-ght loss on a high-fiber diet may be in gut microbiome prevotella abundance[J]. J Nutr, 2019, 149(12): 2083-2084. doi: 10.1093/jn/nxz248
    [46] HJORTH M F, CHRISTENSEN L. Pretreatment prevotella-to-bacteroides ratio and markers of glucose metabolism as prognostic markers for dietary weight loss maintenance[J]. Eur J Clin Nutr, 2020, 74(2): 338-347. doi: 10.1038/s41430-019-0466-1
    [47] DEPOMMIER C, EVERARD A, DRUART C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study[J]. Nat Med, 2019, 25(7): 1096-1103. doi: 10.1038/s41591-019-0495-2
    [48] DAO M C, EVERARD A, ARON-WISNEWSKY J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology[J]. Gut, 2016, 65(3): 426-436. doi: 10.1136/gutjnl-2014-308778
    [49] VALLIANOU N, STRATIGOU T, CHRISTODOULATOS G S, et al. Probiotics, prebiotics, synbiotics, postbiotics and obesity: current evidence, controversies, and perspectives[J]. Curr Obes Rep, 2020, 9(3): 179-192. doi: 10.1007/s13679-020-00379-w
    [50] ESLICK S, THOMPSON C, BERTHON B, et al. Short-chain fatty acids as anti-inflammatory agents in overweight and obesity: a systematic review and Meta-analysis[J]. Nutr Rev, 2022, 80(4): 838-856. doi: 10.1093/nutrit/nuab059
    [51] RASAEI N, HEIDARI M, ESMAEILI F, et al. The effects of prebiotic, probiotic or synbiotic supplementation on overweight/obesity indicators: an umbrella review of the trials' Meta-analysis[J]. Front Endocrinol (Lausanne), 2024, 15: 1277921. doi: 10.3389/fendo.2024.1277921
    [52] LEONG K S W, JAYASINGHE T N, WILSON B C, et al. Effects of fecal microbiome transfer in adolescents with obesity: the gut bugs randomized controlled trial[J]. JAMA Netw Open, 2020, 3(12): e2030415. doi: 10.1001/jamanetworkopen.2020.30415
    [53] LEONG K S W, JAYASINGHE T N, DERRAIK J G B. Protocol for the gut bugs trial: a randomised double-blind placebo-controlled trial of gut microbiome transfer for the treatment of obesity in adolescents[J]. BMJ Open, 2019, 9(4): e026174. doi: 10.1136/bmjopen-2018-026174
    [54] BALLINI A, SCACCO S. Microbiota and obesity: where are we now?[J]. Biology (Basel), 2020, 9(12): 415.
    [55] MANN E R, LAM Y K. Short-chain fatty acids: linking diet, the microbiome and immunity[J]. Nat Rev Immunol, 2024, 24(8): 577-595. doi: 10.1038/s41577-024-01014-8
    [56] KIM M H, YUN K E, KIM J, et al. Gut microbiota and metabolic health among overweight and obese individuals[J]. Sci Rep, 2020, 10(1): 19417. doi: 10.1038/s41598-020-76474-8
    [57] GRIGOR'EVA I N. Gallstone disease, obesity and the firmicutes/bac-teroidetes ratio as a possible biomarker of gut dysbiosis[J]. J Pers Med, 2020, 11(1): 13. doi: 10.3390/jpm11010013
    [58] THAVAMANI A, SALEM I, SFERRA T J, et al. Impact of altered gut microbiota and its metabolites in cystic fibrosis[J]. Metabolites, 2021, 11(2): 123. doi: 10.3390/metabo11020123
    [59] SIEBIESZUK A, SEJBUK M, WITKOWSKA A M. Studying the human microbiota: advances in understanding the fundamentals, origin, and evolution of biological timekeeping[J]. Int J Mol Sci, 2023, 24(22): 16169. doi: 10.3390/ijms242216169
    [60] TANASE D M, GOSAV E M. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM)[J]. Nutrients, 2020, 12(12): 3719. doi: 10.3390/nu12123719
    [61] GAWLIK A, SALONEN A, JIAN C, et al. Personalized approach to childhood obesity: lessons from gut microbiota and omics studies narrative review and insights from the 29th European childhood obesity congress[J]. Pediatr Obes, 2021, 16(10): e12835. doi: 10.1111/ijpo.12835
    [62] NIU H, ZHOU M, ZOGONA D, et al. Akkermansia muciniphila: a potential candidate for ameliorating metabolic diseases[J]. Front Immunol, 2024, 15: 1370658. doi: 10.3389/fimmu.2024.1370658
  • 加载中
计量
  • 文章访问数:  105
  • HTML全文浏览量:  48
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-06-26
  • 网络出版日期:  2024-12-10
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回