留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习构建青少年网络游戏成瘾的预测模型

孔维森 王凯伦 庹安写 李兵 郑曲波 蒋怀滨

孔维森, 王凯伦, 庹安写, 李兵, 郑曲波, 蒋怀滨. 基于机器学习构建青少年网络游戏成瘾的预测模型[J]. 中国学校卫生, 2024, 45(8): 1080-1085. doi: 10.16835/j.cnki.1000-9817.2024239
引用本文: 孔维森, 王凯伦, 庹安写, 李兵, 郑曲波, 蒋怀滨. 基于机器学习构建青少年网络游戏成瘾的预测模型[J]. 中国学校卫生, 2024, 45(8): 1080-1085. doi: 10.16835/j.cnki.1000-9817.2024239
KONG Weisen, WANG Kailun, TUO Anxie, LI Bing, ZHENG Qubo, JIANG Huaibin. Building a predictive model for adolescent Internet gaming disorder based on machine learning[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(8): 1080-1085. doi: 10.16835/j.cnki.1000-9817.2024239
Citation: KONG Weisen, WANG Kailun, TUO Anxie, LI Bing, ZHENG Qubo, JIANG Huaibin. Building a predictive model for adolescent Internet gaming disorder based on machine learning[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(8): 1080-1085. doi: 10.16835/j.cnki.1000-9817.2024239

基于机器学习构建青少年网络游戏成瘾的预测模型

doi: 10.16835/j.cnki.1000-9817.2024239
基金项目: 

贵州省卫生健康委2023年科学技术基金项目 gzwkj2023-476

详细信息
    作者简介:

    孔维森(1998-),男,贵州贵阳人,在读硕士,主要研究方向为儿少卫生学

    通讯作者:

    庹安写,E-mail: 1298253638@qq.com

  • 利益冲突声明   所有作者声明无利益冲突。
  • 中图分类号: C913.5  B844.2  TB181  TN711.5

Building a predictive model for adolescent Internet gaming disorder based on machine learning

  • 摘要:   目的  探索机器学习预测青少年网络游戏成瘾的效果,为制定有效的干预措施提供指导。  方法  于2023年6—9月,采用分层随机整群抽样方法选取贵州省毕节市、黔西市和金沙县3个地区3所初中和3所高中2 100名学生作为研究对象。采用简式网络游戏障碍量表(IGDS9-SF)、父母心理控制与自主支持问卷(PPCASQ)、动机结构问卷、相对剥夺感问卷、越轨同伴交往问卷以及自我控制双系统量表进行数据收集。描述性统计分析确定样本特征,使用χ2检验和Mann-Whitney U检验分析变量的组间差异。以人口学变量和各种影响因素作为自变量,以青少年是否网络游戏成瘾作为因变量,运用随机森林、逻辑回归、支持向量机、梯度提升树、决策树和自适应提升算法多种机器学习算法构建预测模型。  结果  青少年网络游戏成瘾检出率为4.57%(96名);男生和初中生网络游戏成瘾检出率(5.52%,6.29%)相较女生和高中生(3.32%,3.62%)更高,差异均有统计学意义(χ2值分别为5.71,7.86,P值均 < 0.01)。网络游戏成瘾组相对剥夺感、越轨同伴交往、父亲心理控制、母亲心理控制、控制动机、冲动系统及其维度(冲动性、易分心、低延迟满足)得分高于非网络游戏成瘾组,而父母自主支持得分低于非网络游戏成瘾组(Z值分别为-2.88,-9.32,-4.13,-4.48,-6.58,-7.50,-7.18,-7.56,-7.43,-2.27,P值均<0.05)。预测模型中,自适应提升算法表现最佳(精确度99%,召回率95%,F1分数97%,AUC值为0.96);其次为随机森林和梯度提升树(精确度均为98%,召回率均为95%,F1分数分别为97%和96%,AUC值均为0.96)。  结论  相较于其他模型,自适应提升算法对青少年网络游戏成瘾有良好预测效果。应选择适合模型尽早识别存在网络游戏成瘾的个体,制定有效的干预策略,降低青少年网络游戏成瘾风险。
    1)  利益冲突声明   所有作者声明无利益冲突。
  • 图  1  青少年网络游戏成瘾影响因素重要性排序的自适应提升算法

    Figure  1.  Adaptive boosting algorithm illustration of the importance ranking of factors influencing adolescent Internet gaming disorder

    图  2  青少年网络游戏成瘾影响因素重要性排序的随机森林算法

    Figure  2.  Random forest illustration of the importance ranking of factors influencing adolescent Internet gaming disorder

    图  3  青少年网络游戏成瘾影响因素重要性排序梯度提升树算法

    Figure  3.  Gradient boosting tree illustration of the importance ranking of factors influencing adolescent Internet gaming disorder

    表  1  不同人口学特征青少年网络游戏成瘾检出比较

    Table  1.   Comparison of Internet gaming disorder detection rates among adolescents with different demographic variables

    人口学指标 选项 人数 网络游戏成瘾人数 χ2 P
    性别 1 196 66(5.52) 5.71 <0.01
    904 30(3.32)
    学段 初中 747 47(6.29) 7.86 <0.01
    高中 1 353 49(3.62)
    民族 汉族 1 419 57(4.02) 3.08 0.08
    其他 681 39(5.73)
    户籍类型 城镇 340 16(4.71) 0.17 0.89
    农村 1 760 80(4.55)
    是否独生子女 297 15(5.05) 0.18 0.67
    1 803 81(4.49)
    是否留守 350 22(6.29) 2.89 0.09
    1 750 74(4.23)
    家庭类型 完整 1 557 67(4.30) 0.99 0.31
    其他 543 29(5.34)
    母亲文化程度 初中及以下 1 740 71(4.08) 4.40 0.11
    高中/中专 252 14(5.56)
    大专及以上 108 11(10.19)
    父亲文化程度 初中及以下 1 697 77(4.54) 3.06 0.21
    高中/中专 283 10(3.53)
    大专及以上 120 9(7.50)
    注:()内数字为检出率/%。
    下载: 导出CSV

    表  2  不同网络游戏成瘾组别青少年各量表得分比较[M(P25P75)]

    Table  2.   Comparison of scores among adolescents with different Internet gaming disorder groups[M(P25, P75)]

    网络游戏成瘾 人数 越轨同伴交往 父母自主支持 相对剥夺感 母亲心理控制 父亲心理控制 控制动机 冲动性 易分心 低延迟满足 问题解决 未来时间观 控制系统 冲动系统
    96 18(14, 22) 22(16, 30) 10(7, 12) 49(36, 65) 42(28, 56) 28(21, 39) 15(10, 20) 11(8, 13) 9(6, 11) 18(15, 24) 7(5, 11) 26(20, 34) 52(46, 61)
    2 004 12(9, 16) 25(19, 31) 9(6, 11) 39(29, 51) 34(22, 45) 20(16, 26) 10(7, 13) 7(5, 9) 6(3, 8) 20(16, 24) 8(6, 10) 28(23, 33) 44(38, 50)
    合计 2 100 12(9, 16) 25(19, 31) 9(6, 11) 40(29, 51) 35(23, 46) 20(16, 27) 10(7, 14) 8(5, 10) 6(4, 8) 20(16, 24) 8(6, 10) 28(23, 33) 44(38, 50)
    Z -9.32 -2.27 -2.88 -4.48 -4.13 -6.58 -7.18 -7.56 -7.43 -0.79 -0.99 -0.91 -7.50
    P <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.42 0.32 0.35 <0.01
    下载: 导出CSV

    表  3  不同机器学习算法预测青少年网络游戏成瘾效果

    Table  3.   Performance of different machine learning algorithms in predicting adolescent Inetrnet gaming disorder

    机器学习算法 精确度/% 召回率/% F1/% AUC值
    支持向量机 98 88 93 0.84
    决策树 92 92 92 0.84
    梯度提升树 98 95 96 0.96
    自适应提升算法 99 95 97 0.96
    随机森林 98 95 97 0.96
    逻辑回归 95 88 91 0.88
    下载: 导出CSV
  • [1] 中国互联网络信息中心. 2021年全国未成年人互联网使用情况研究报告[EB/OL]. (2022-12-01)[2023-04-16]. http://www.cnnic.cn/n4/2022/1201/c135-10691.html.

    China Internet Network Information Center. Research report on Internet usage among minors in China, 2021[EB/OL]. (2022-12-01)[2023-04-16]. http://www.cnnic.cn/n4/2022/1201/c135-10691.html. (in Chinese)
    [2] YOUNG K S, DE ABREU C N. Internet addiction: a handbook and guide to evaluation and treatment[M]. Hoboken, NJ: John Wiley and Sons, Inc, 2011.
    [3] GRIFFITHS M D, KIRÁLY O, PONTES H M, et al. An overview of problematic gaming[M]//ABOUJAOUDE E, STARCEVIC V. Mental health in the digital age: grave dangers, great promise. Oxford: Oxford Univerty Press, 2015: 27-45.
    [4] WANG C W, HO R T, CHAN C L, et al. Exploring personality characteristics of Chinese adolescents with Internet-related addictive behaviors: trait differences for gaming addiction and social networking addiction[J]. Addict Behav, 2015, 42: 32-35. doi: 10.1016/j.addbeh.2014.10.039
    [5] YU C F, LI X, ZHANG W. Predicting adolescent problematic online game use from teacher autonomy support, basic psychological needs satisfaction and school engagement: a two-year longitudinal study[J]. Cyberpsychol Behav Soc Network, 2015, 18(4): 228-233. doi: 10.1089/cyber.2014.0385
    [6] HAWI N S, SAMAHA M, GRIFFITHS M D. Internet gaming disorder in Lebanon: relationships with age, sleep habits, and academic achievement[J]. J Behav Addict, 2018, 7(1): 70-78. doi: 10.1556/2006.7.2018.16
    [7] KIRBY A, JONES C, CAPELLO A. The impact of massively multiplayer online role playing games(morphs) on psychological well-being and the role of play motivations and problematic use[J]. Int J Ment Health Addict, 2014, 12(1): 36-51. doi: 10.1007/s11469-013-9467-9
    [8] JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. doi: 10.1126/science.aaa8415
    [9] MORENO M A, JELENCHICK L A, EGAN K G, et al. Feeling bad on Facebook: depression disclosures by college students on a social networking site[J]. Depress Anxiety, 2011, 28(6): 447-455. doi: 10.1002/da.20805
    [10] XING W, DU D. Dropout prediction in MOOCs: using deep learning for personalized intervention[J]. J Educ Comput Res, 2019, 57(3): 547-570. doi: 10.1177/0735633118757015
    [11] 马鸣, 刘欢, 刘润香. 机器学习在大学生自杀意念预测中的应用[J]. 中国学校卫生, 2022, 43(5): 763-767. doi: 10.16835/j.cnki.1000-9817.2022.05.029

    MA M, LIU H, LIU R X. Application of machine learning in the prediction of college students' suicidal ideation[J]. Chin J Sch Health, 2022, 43(5): 763-767. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2022.05.029
    [12] MICHÉ M, STUDERUS E, MEYER A H, et al. Prospective prediction of suicide attempts in community adolescents and young adults, using regression methods and machine learning[J]. J Affect Dis, 2020, 265: 570-578. doi: 10.1016/j.jad.2019.11.093
    [13] PONTES H, STAVROPOULOS V, GRIFFITHS M. Measurement invariance of the Internet Gaming Disorder Scale-Short Form (IGDS9-SF) between the United States of America, India and the United Kingdom[J]. Psychiatry Res, 2017, 257: 472-478. doi: 10.1016/j.psychres.2017.08.013
    [14] QIN L, CHENG L, HU M, et al. Clarification of the cut-off score for Nine-Item Internet Gaming Disorder Scale-Short Form (IGDS9-SF) in a Chinese context[J]. Front Psychiatry, 2020(11): 470.
    [15] WANG Q, POMERANTZ E M, CHEN H. The role of parents' control in early adolescents' psychological functioning: a longitudinal investigation in the United States and China[J]. Child Dev, 2007, 78(5): 1592-1610. doi: 10.1111/j.1467-8624.2007.01085.x
    [16] 许燕, 王萍萍. 基于动词分析的中国人人格结构模型探索[C]//中国心理学会. 增强心理学服务社会的意识和功能: 中国心理学会成立90周年纪念大会暨第十四届全国心理学学术会议论文摘要集. 北京: 北京师范大学心理学院, 2011: 2.

    XU Y, WANG P P. Exploration of the Chinese personality structure model based on verb analysis[C]//Chinese Psychological Society. Enhancing the consciousness and function of psychological services in society-commemorating the 90th anniversary of the Chinese psychological society and the abstracts of the fourteenth national academic conference on psychology. Beijing: School of Psychology, Beijing Normal University, 2011: 2. (in Chinese)
    [17] 马皑. 相对剥夺感与社会适应方式: 中介效应和调节效应[J]. 心理学报, 2012, 44(3): 377-387. https://www.cnki.com.cn/Article/CJFDTOTAL-XLXB201203011.htm

    MA A. Relative deprivation and social adaptation methods: mediating and moderating effects[J]. Acta Psychol Sin, 2012, 44(3): 377-387. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XLXB201203011.htm
    [18] LI D, LI X, WANG Y, et al. School connectedness and problematic Internet use in adolescents: a moderated mediation model of deviant peer affiliation and self-control[J]. J Abnorm Child Psychol, 2013, 41(8): 1231-1242. doi: 10.1007/s10802-013-9761-9
    [19] 谢东杰, 王利刚, 陶婷, 等. 青少年自我控制双系统量表中文版的效度和信度[J]. 中国心理卫生杂志, 2014, 28(5): 386-391. doi: 10.3969/j.issn.1000-6729.2014.05.012

    XIE D J, WANG L G, TAO T, et al. Validity and reliability of the Chinese version of the Dual-mode of Self-control Scale for Adolescents[J]. Chin Ment Health J, 2014, 28(5): 386-391. (in Chinese) doi: 10.3969/j.issn.1000-6729.2014.05.012
    [20] BADILLO S, BANFAI B, BIRZELE F, et al. An introduction to machine learning[J]. Clin Pharmacol Ther, 2020, 107(4): 871-885. doi: 10.1002/cpt.1796
    [21] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. J Artific Intell Res, 2002, 16: 321-357. doi: 10.1613/jair.953
    [22] YU Y, MO P K H, ZHANG J, et al. Validation of the Expected Social Acceptance via Internet Gaming Scale (ESAIGS) among adolescent Internet gamers in China[J]. Int J Ment Health Addict, 2023, 21(2): 450-469.
    [23] 张珊珊, 张野. 中学生压力生活事件和网游动机在角色依恋与网游成瘾间的作用[J]. 中国学校卫生, 2019, 40(10): 1517-1520. doi: 10.16835/j.cnki.1000-9817.2019.10.022

    ZHANG S S, ZHANG Y. Mediation of stressful life events and online game intention in the relationship between role attachment and Internet game addiction among middle school students[J]. Chin J Sch Health, 2019, 40(10): 1517-1520. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2019.10.022
    [24] 董睿, 李雅超, 胡志民. 北京市本科生网络游戏动机与网络游戏成瘾的关系及其性别差异[J]. 医学与社会, 2023, 36(10): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-YXSH202310017.htm

    DONG R, LI Y C, HU Z M. Gender differences in the relationship between online gaming motivation and Internet gaming addiction among undergraduates in Beijing[J]. Med Soc, 2023, 36(10): 103-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YXSH202310017.htm
    [25] 孙丽君, 刘子奇, 武涵, 等. 相对剥夺感对大学生网络游戏成瘾的影响: 基于虚拟化身-玩家关系的视角[J]. 中国临床心理学杂志, 2022, 30(6): 1276-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202206002.htm

    SUN L J, LIU Z Q, WU H, et al. The effect of relative deprivation on college students' online game addiction: from the perspective of avatar-player relationship[J]. Chin J Clin Psychol, 2022, 30(6): 1276-1281. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202206002.htm
    [26] YANG B, CAI G, XIONG C, et al. Relative deprivation and game addiction in left-behind children: a moderated mediation[J]. Front Psychol, 2021, 12: 639051. doi: 10.3389/fpsyg.2021.639051
    [27] 李蒙蒙, 甘雄, 金鑫. 父母婚姻冲突与青少年网络游戏成瘾: 越轨同伴交往和神经质的多重中介作用[J]. 中国临床心理学杂志, 2020, 28(2): 354-358. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202002028.htm

    LI M M, GAN X, JIN X. Marital conflicts and Internet gaming disorder in adolescents: multiple mediations of deviant peer affiliation and neuroticism[J]. Chin J Clin Psychol, 2020, 28(2): 354-358. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202002028.htm
    [28] BRONFENBRENNER U, CECI S J. Nature-nurture reconceptualized in developmental perspective: a bioecological model[J]. Psychol Rev, 1994, 101(4): 568-586. doi: 10.1037/0033-295X.101.4.568
    [29] SHIMIL P, SRIVASTAVA A. Impact of parenting style and self-control on Internet gaming disorder among adolescents[J]. Int J Health Sci, 2022, 6(special issue 4): 1181-1195.
    [30] 陈云祥, 李若璇, 刘翔平. 父母心理控制、自主支持与青少年外化问题行为: 控制动机的中介作用[J]. 中国临床心理学杂志, 2018, 26(5): 981-986. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY201805031.htm

    CHEN Y X, LI R X, LIU X P. Parental psychological control, autonomy support and externalizing problem behaviors in adolescents: the mediating role of control motivation[J]. Chin J Clin Psychol, 2018, 26(5): 981-986. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY201805031.htm
    [31] 申子姣, 房超, 张锦涛, 等. 父母行为心理控制与青少年网络成瘾的关系[J]. 中国临床心理学杂志, 2012, 20(5): 652-655. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY201205021.htm

    SHEN Z J, FANG C, ZHANG J T, et al. Relationships among paternal and maternal control and Internet addiction of adolescents[J]. Chin J Clin Psychol, 2012, 20(5): 652-655. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY201205021.htm
    [32] 邓林园, 刘晓彤, 唐远琼, 等. 父母心理控制、自主支持与青少年网络游戏成瘾: 冲动性的中介作用[J]. 中国临床心理学杂志, 2021, 29(2): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202102020.htm

    DENG L Y, LIU X T, TANG Y Q, et al. Parental psychological control, autonomy support and adolescent Internet gaming disorder: the mediating role of impulsivity[J]. Chin J Clin Psychol, 2021, 29(2): 316-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202102020.htm
    [33] MAZHARI S. Association between problematic Internet use and impulse control disorders among Iranian university students[J]. Cyberpsychol Behav Soc Network, 2012, 15(5): 270-273. doi: 10.1089/cyber.2011.0548
    [34] RAJULA H S R, VERLATO G, MANCHIA M, et al. Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment[J]. Medicina (Kaunas, Lithuania), 2020, 56(9): 455.
    [35] 奚婉, 胡玉正. 青少年网络游戏成瘾的研究现状与展望[J]. 应用心理学, 2022, 28(1): 3-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YXNX202201001.htm

    XI W, HU Y Z. Internet gaming disorder in adolescents: review and prospect[J]. Appl Psychol, 2022, 28(1): 3-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YXNX202201001.htm
    [36] GRENDAS L N, CHIAPPELLA L, RODANTE D E, et al. Comparison of traditional model-based statistical methods with machine learning for the prediction of suicide behaviour[J]. J Psychiatr Res, 2022, 145: 85-91. doi: 10.1016/j.jpsychires.2021.11.029
    [37] ISLAM S, TUSHER A N, MIA M S, et al. A machine learning based approach to predict online gaming addiction in the context of bangladesh[C]//Proceedings of the 2022 13th international conference on computing communication and networking technologies (ICCCNT). Kharagpur, India: IEEE, 2022: 1-7.
    [38] DING Y, ZHU H, CHEN R, et al. An efficient AdaBoost algorithm with the multiple thresholds classification[J]. Appl Sci, 2022, 12(12): 5872.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  145
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-07-03
  • 刊出日期:  2024-08-25

目录

    /

    返回文章
    返回