留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

最大脂肪氧化强度运动和饮食限制对肥胖非酒精性脂肪肝病大学生血脂及铁死亡的影响

刘炎冰 李巧娥 门杰 施文海

刘炎冰, 李巧娥, 门杰, 施文海. 最大脂肪氧化强度运动和饮食限制对肥胖非酒精性脂肪肝病大学生血脂及铁死亡的影响[J]. 中国学校卫生, 2024, 45(6): 812-816. doi: 10.16835/j.cnki.1000-9817.2024182
引用本文: 刘炎冰, 李巧娥, 门杰, 施文海. 最大脂肪氧化强度运动和饮食限制对肥胖非酒精性脂肪肝病大学生血脂及铁死亡的影响[J]. 中国学校卫生, 2024, 45(6): 812-816. doi: 10.16835/j.cnki.1000-9817.2024182
LIU Yanbing, LI Qiaoe, MEN Jie, SHI Wenhai. Effects of maximum fat oxidation intensity exercise combined with diet restriction on lipid and ferroptosis in obese college students with non-alcoholic fatty liver disease[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(6): 812-816. doi: 10.16835/j.cnki.1000-9817.2024182
Citation: LIU Yanbing, LI Qiaoe, MEN Jie, SHI Wenhai. Effects of maximum fat oxidation intensity exercise combined with diet restriction on lipid and ferroptosis in obese college students with non-alcoholic fatty liver disease[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(6): 812-816. doi: 10.16835/j.cnki.1000-9817.2024182

最大脂肪氧化强度运动和饮食限制对肥胖非酒精性脂肪肝病大学生血脂及铁死亡的影响

doi: 10.16835/j.cnki.1000-9817.2024182
基金项目: 

2022年山西省教育科学“十四五”规划课题 GH-220343

山西医科大学汾阳学院科研基金项目 2017A01

详细信息
    作者简介:

    刘炎冰(1981-),男,山西汾阳人,硕士,讲师,主要研究方向为体育教育与运动康复

    通讯作者:

    施文海,E-mail: tysyswh@163.com

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R179 G806 R723.14 R589.2

Effects of maximum fat oxidation intensity exercise combined with diet restriction on lipid and ferroptosis in obese college students with non-alcoholic fatty liver disease

  • 摘要:   目的  比较12周最大脂肪氧化(FATmax)强度运动结合饮食限制及单独FATmax强度运动对肥胖非酒精性脂肪性肝病(NAFLD)大学生身体成分、脂代谢及铁死亡的影响,为肥胖NAFLD大学生的康复治疗提供运动处方参考。  方法  于2023年8月,通过网上发布通知和山西医科大学汾阳学院健康体检中心招募在校本科生,从中选取45名肥胖NAFLD大学生,用随机数字表法分为FATmax强度运动结合饮食限制组(FATmax+DR,22名)和FATmax强度运动组(FATmax组,23名)。其中FATmax组进行12周、每周3次的FATmax强度运动(FATmax: 0.51 g/min,运动强度: 50.14% VO2max,对应的心率: 136.78次/min);FATmax+DR组进行12周FATmax强度运动结合饮食限制(每日饮食摄入能量依据静息能耗确定食谱)。干预前后分别对两组受试者身体成分、血脂4项及氧化应激、铁死亡相关指标进行测试。采用独立样本t检验及配对样本t检验分析各组指标差异。  结果  干预前,FATmax+DR组和FATmax组身体成分、血脂4项及氧化应激、铁死亡相关指标差异均无统计学意义(P值均>0.05)。干预12周后,FATmax+DR组体重、体质量指数(BMI)、体脂肪量、躯干脂肪量、内脏脂肪面积及血清低密度脂蛋白(LDL)、丙二醛(MDA)和铁蛋白水平均低于FATmax组,血清高密度脂蛋白(HDL)及谷胱甘肽(GSH)水平均高于FATmax组(t值分别为-2.30,-3.23,-3.97,-5.85,-3.44,-3.06,-2.03,-2.09;2.73,2.42,P值均 < 0.05);两组间血清总胆固醇(TC)、甘油三酯(TG)、超氧化物歧化酶(SOD)及谷胱甘肽过氧化物酶4(GPX4)水平差异均无统计学意义(t值分别为1.49,1.00,-0.01,0.59,P值均>0.05)。  结论  12周FATmax强度运动结合饮食限制在改善肥胖NAFLD大学生身体成分及血脂紊乱、抑制铁死亡发生及肝脏氧化应激损伤方面的效果更加显著。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • 表  1  不同组别干预前后肥胖NAFLD大学生身体成分比较(x±s)

    Table  1.   Comprison of body composition of obese NAFLD college students in different groups before and after intervention(x±s)

    组别 干预前后 人数 统计值 体重/kg BMI/(kg·m-2) 体脂肪量/kg 躯干脂肪量/kg 内脏脂肪面积/cm2
    FATmax组 干预前 23 81.74±5.41 29.84±1.41 29.20±2.13 17.15±1.23 115.30±4.40
    干预后 23 79.50±5.68 28.65±1.27 27.45±1.89 16.99±1.31 112.61±4.54
    t 5.46 5.36 8.56 1.87 8.19
    P < 0.01 < 0.01 < 0.01 0.08 < 0.01
    FATmax+DR组 干预前 22 80.42±5.09 29.47±1.39 28.82±1.58 16.59±1.35 114.91±4.26
    干预后 22 75.78±5.16 27.54±1.02 25.29±1.75 14.52±1.52 107.86±4.70
    t 15.48 14.63 13.11 9.55 9.45
    P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
    下载: 导出CSV

    表  2  不同组别干预前后肥胖NAFLD大学生血脂水平比较(x±s,mmol/L)

    Table  2.   Comparison of blood lipid levels of obese NAFLD college students in different groups before and after intervention(x±s, mmol/L)

    组别 干预前后 人数 统计值 TC TG HDL LDL
    FATmax组 干预前 23 4.92±0.93 2.13±0.51 1.18±0.31 3.59±0.54
    干预后 23 4.80±0.90 2.03±0.47 1.24±0.20 3.50±0.46
    t 1.88 2.61 -2.24 1.74
    P 0.07 0.02 0.04 0.10
    FATmax+DR组 干预前 22 4.75±0.96 2.04±0.63 1.16±0.18 3.44±0.37
    干预后 22 4.44±0.73 1.89±0.52 1.45±0.20 3.09±0.33
    t 1.74 2.21 -11.26 6.67
    P 0.10 0.04 < 0.01 < 0.01
    下载: 导出CSV

    表  3  不同组别干预前后肥胖NAFLD大学生铁死亡及氧化应激指标比较(x±s)

    Table  3.   Comparison of ferroptosis and oxidative stress indicators of obese NAFLD college students in different groups before and after intervention(x±s)

    组别 干预前后 人数 统计值 SOD/(U·mL-1) MDA/(nmol·mL-1) GSH/(μmol·L-1) GPX 4/(ng·mL-1) 血清铁蛋白/(μg·L-1)
    FATmax组 干预前 23 70.81±12.84 6.57±1.47 114.31±14.58 64.06±10.18 121.79±12.68
    干预后 23 73.48±11.43 5.88±1.13 120.87±15.55 65.03±0.98 117.04±11.65
    t -5.28 8.09 -6.15 -2.04 6.01
    P < 0.01 < 0.01 < 0.01 0.05 < 0.01
    FATmax+DR组 干预前 22 68.21±9.53 6.31±1.19 119.61±10.93 62.39±8.95 116.17±12.74
    干预后 22 73.51±7.36 5.23±1.01 130.11±9.40 63.43±8.04 110.12±10.46
    t -8.70 12.29 -10.79 -2.97 6.67
    P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
    下载: 导出CSV
  • [1] YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease: Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. doi: 10.1002/hep.28431
    [2] 王晓峰, 王祥全. 大学生人口身体素质变动及其问题成因分析[J]. 人口学刊, 2018, 40(2): 86-95. https://www.cnki.com.cn/Article/CJFDTOTAL-RKXK201802007.htm

    WANG X F, WANG X Q. An analysis on the change and causes of physical quality in college students[J]. Popul J, 2018, 40(2): 86-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RKXK201802007.htm
    [3] ZHAO S, GUO Y, YIN X. Lipid peroxidation in ferroptosis and association with nonalcoholic fatty liver disease[J]. Front Biosc(Landmark Ed), 2023, 28(12): 332. doi: 10.31083/j.fbl2812332
    [4] 李文远, 夏中元, 李维, 等. 铁死亡在心肌缺血再灌注损伤中作用研究进展[J]. 中华实用诊断与治疗杂志, 2019, 33(6): 607-610. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD201906027.htm

    LI W Y, XIA Z U, LI W, et al. Role of ferroptosis in myocardial ischemia-reperfusion injury[J]. J Chin Pract Diagn Ther, 2019, 33(6): 607-610. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD201906027.htm
    [5] MA C, HAN L, ZHU Z, et al. Mineral metabolism and ferroptosis in non-alcoholic fatty liver diseases[J]. Biochem Pharmacol, 2022, 205: 115242. doi: 10.1016/j.bcp.2022.115242
    [6] HOUGHTON D, THOMA C, HALLSWORTH K, et al. Exercise reduces liver lipids and visceral adiposity in patients with nonalcoholic steatohepatitis in a randomized controlled trial[J]. Clin Gastroenterol Hepatol, 2017, 15(1): 96-102. doi: 10.1016/j.cgh.2016.07.031
    [7] ACHTEN J, GLEESON M, JEUKENDRUP A E. Determination of the exercise intensity that elicits maximal fat oxidation[J]. Med Sci Sports Exerc, 2002, 34(1): 92-97. doi: 10.1097/00005768-200201000-00015
    [8] CHÁVEZ-GUEVARA I A, URQUIDEZ-ROMERO R, PÉREZ-LEÓN J A, et al. Chronic effect of fatmax training on body weight, fat mass, and cardiorespiratory fitness in obese subjects: a Meta-analysis of randomized clinical trials[J]. Int J Environ Res Public Health, 2020, 17(21): 7888. doi: 10.3390/ijerph17217888
    [9] VENABLES M C, JEUKENDRUP A E. Endurance training and obesity: effect on substrate metabolism and insulin sensitivity[J]. Med Sci Sports Exerc, 2008, 40(3): 495-502. doi: 10.1249/MSS.0b013e31815f256f
    [10] 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病防治指南(2018更新版)[J]. 传染病信息, 2018, 31(5): 393-402, 420. doi: 10.3969/j.issn.1007-8134.2018.05.002

    Fatty Liver and Alcoholic Liver Disease Group, Chinese Society of Hepatology. Guidelines for prevention and treatment for non-alcoholic fatty liver disease (2018 update)[J]. Infec Dis Info, 2018, 31(5): 393-402, 420. (in Chinese) doi: 10.3969/j.issn.1007-8134.2018.05.002
    [11] 彭永, 朱欢, 杨梅, 等. 12周FATmax强度运动对肥胖型非酒精性脂肪肝患者血糖血脂及肝功能的影响[J]. 基因组学与应用生物学, 2022, 41(3): 648-658. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNB202203018.htm

    PENG Y, ZHU H, YANG M, et al. The effects of 12-week FATmax intensity exercise on blood glucose, blood lipids and liver function in obese non-alcoholic fatty liver patients[J]. Genomics Appl Biol, 2022, 41(3): 648-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXNB202203018.htm
    [12] LAWLER J M, RODRIGUEZ D A, HORD J M. Mitochondria in the middle: exercise preconditioning protection of striated muscle[J]. J Physiol, 2016, 594(18): 5161-5183. doi: 10.1113/JP270656
    [13] JEUKENDRUP A E, ACHTEN J. Fatmax: a new concept to optimize fat oxidation during exercise?[J]. Eur J Sport Sci, 2001, 1(5): 1-5.
    [14] ACHTEN J, JEUKENDRUP A E. The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation[J]. J Sports Sci, 2003, 21(12): 1017-1024. doi: 10.1080/02640410310001641403
    [15] ASTORINO T A, EDMUNDS R M, CLARK A, et al. Change in maximal fat oxidation in response to different regimes of periodized high-intensity interval training (HⅡT)[J]. Eur J Appl Physiol, 2017, 117(4): 745-755. doi: 10.1007/s00421-017-3535-y
    [16] HAUFE S, ENGELI S, BUDZIAREK P, et al. Determinants of exercise-induced fat oxidation in obese women and men[J]. Horm Metab Res, 2010, 42(3): 215-221. doi: 10.1055/s-0029-1242745
    [17] CHÁVEZ-GUEVARA I A, URQUIDEZ-ROMERO R, PÉREZ-LEÓN J A, et al. Chronic effect of fatmax training on body weight, fat mass, and cardiorespiratory fitness in obese subjects: a Meta-analysis of randomized clinical trials[J]. Int J Environ Res Public Health, 2020, 17(21): 7888. doi: 10.3390/ijerph17217888
    [18] BEN OUNIS O, ELLOUMI M, BEN CHIEKH I, et al. Effects of two-month physical-endurance and diet-restriction programmes on lipid profiles and insulin resistance in obese adolescent boys[J]. Diabetes Metab, 2008, 34(6Pt1): 595-600.
    [19] RECCHIA F, LEUNG C K, YU A P, et al. Dose-response effects of exercise and caloric restriction on visceral adiposity in overweight and obese adults: a systematic review and Meta-analysis of randomised controlled trials[J]. Br J Sports Med, 2023, 57(16): 1035-1041. doi: 10.1136/bjsports-2022-106304
    [20] 李印东, 李梦龙, 段军伟, 等. 北京市超重肥胖儿童内脏脂肪指数与非酒精性脂肪肝的关系[J]. 中国学校卫生, 2021, 42(5): 659-662. doi: 10.16835/j.cnki.1000-9817.2021.05.005

    LI Y D, LI M L, DUAN J W, et al. Association between visceral adiposity index and non-alcoholic fatty liver among overweight and obese children in Beijing[J]. Chin J Sch Health, 2021, 42(5): 659-662. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2021.05.005
    [21] 刘玉倩, 杨雯茜, 王海涛. GSH/GPx4介导的铁死亡通路在有氧运动预防自然衰老小鼠模型肝过氧化损伤中的作用[J]. 中国实验动物学报, 2023, 31(12): 1581-1587. doi: 10.3969/j.issn.1005-4847.2023.12.008

    LIU Y Q, YANG W Q, WANG H T. Role of the ferroptosis pathway mediated by GSH/GPx4 in preventing hepatocyte peroxidative injury following aerobic exercise in an elderly mouse model[J]. Acta Lab Anim Sci Sinica, 2023, 31(12): 1581-1587. (in Chinese) doi: 10.3969/j.issn.1005-4847.2023.12.008
    [22] ZHANG H, ZHANG E, HU H. Role of ferroptosis in non-alcoholic fatty liver disease and its implications for therapeutic strategies[J]. Biomedicines, 2021, 9(11): 1660. doi: 10.3390/biomedicines9111660
    [23] 张宝文, 寇现娟. 跑台运动抑制铁死亡改善非酒精性脂肪肝病的机制研究[C]//中国体育科学学会. 第十三届全国体育科学大会论文摘要集. 北京, 2023.

    ZHANG B W, KOU X J. Study on mechanism of inhibiting ferroptosis and improving nonalcoholic fatty liver disease by treadmill exercise[C]//Chinese Society of Sports Science. Abstract collection of the 13th National Sports Science Conference. Beijing, 2023. (in Chinese)
    [24] ZHU Z, ZHANG Y, HUANG X, et al. Thymosin beta 4 alleviates non-alcoholic fatty liver by inhibiting ferroptosis via up-regulation of GPX4[J]. Eur J Pharmacol, 2021, 908: 174351. doi: 10.1016/j.ejphar.2021.174351
    [25] 蔡海芳, 何春霞, 刘晟, 等. 肥胖儿童非酒精性脂肪肝病与血清铁蛋白的相关性研究[J]. 中国食物与营养, 2021, 27(2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWY202102019.htm

    CAI H F, HE C X, LIU S, et al. The correlation between serum ferritin and nonalcoholic fatty liver disease among obese children[J]. Food Nutr China, 2021, 27(2): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWY202102019.htm
  • 加载中
表(3)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  117
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-20
  • 修回日期:  2024-03-29
  • 网络出版日期:  2024-06-27
  • 刊出日期:  2024-06-25

目录

    /

    返回文章
    返回