Concentration and health risk assessment of trichloromethane in drinking water for rural primary and middle school students in Tianjin
-
摘要:
目的 评价天津市农村地区中小学饮用水中三氯甲烷(TCM)的分布特征及其健康风险,为改善农村学校饮用水安全提供科学依据。 方法 于2023年4—6月(枯水期)和7—10月(丰水期),采用直接抽选法从天津市10个涉农行政区30所农村中小学校采集末梢水水样60份,参照《生活饮用水标准检验方法》检测其中TCM含量,采用美国环境保护署推荐的健康风险评估模型对中小学生经口摄入健康风险进行评估。 结果 农村学校饮用水中TCM质量浓度范围为未检出~54.00 μg/L,平均质量浓度为(13.44±14.88)μg/L;丰水期TCM质量浓度[12.90(1.40, 32.28)μg/L]高于枯水期[2.40(1.40, 18.13)μg/L](Z=-2.09, P<0.05);小学和中学TCM质量浓度分别为[3.38(1.40, 20.75)μg/L]和[5.30(1.40, 28.23)μg/L],差异无统计学意义(Z=0.50,P>0.05)。儿童经口暴露的致癌风险范围为3.84×10-7~2.05 ×10-5,非致癌风险范围为0.00~0.16,均处于可接受水平,其中6~9岁儿童的潜在风险最高。 结论 天津市农村中小学校饮用水中TCM呈不同程度检出,经口暴露的潜在健康风险应得到重视。应加强饮用水消毒副产物监测和管理,以降低儿童暴露风险。 Abstract:Objective To evaluate the distribution characteristics and health risk of trichloromethane (TCM) in the drinking water supply of primary and middle schools in rural areas of Tianjin, so as to provide a scientific basis for improving drinking water safety in rural schools. Methods A total of 60 water samples from 30 rural primary and middle schools in 10 agricultural districts of Tianjin were collected from April to June (dry season) and July to October (wet season) in 2023 with direct selection method. The content of TCM was detected according to the Standard Methods for the Examination of Drinking Water, and a risk assessment method recommended by the United States Environmental Protection Agency was used to evaluate the health risk of TCM through oral exposure. Results The concentration of TCM in drinking water was no detection to 54.00 μg/L, with an average of (13.44±14.88) μg/L, and the value was higher during the wet season [12.90(1.40, 32.28)μg/L] than the dry season [2.40(1.40, 18.13)μg/L] (Z=-2.09, P<0.05). The concentration of TCM for primary and middle schools were [3.38(1.40, 20.75) μg/L] and [5.30(1.40, 28.23)μg/L] respectively, and there was no statistically significant difference between different types of schools (Z=0.50, P>0.05). The carcinogenic risk through oral exposure ranged from 3.84×10-7 to 2.05×10-5, while the non-carcinogenic risk ranged from (0.00-0.16), all within the acceptable range. Children aged 6 to 9 years old were at the highest risk. Conclusions TCM has been detected in the drinking water of rural primary and middle schools to a certain extent in Tianjin, and attention should be paid to the potential health risks of oral exposure. The monitoring and management of disinfection by-products in drinking water should be strengthened to further reduce the risk of exposure to children. -
Key words:
- Drinking /
- Trichloromethane /
- Environmental monitoring /
- Rural health
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 农村中小学校饮用水中TCM质量浓度范围/(μg·L-1)
Table 1. Mass concentration range of TCM in drinking water of rural primary and middle schools/(μg·L-1)
类型 水样数 x±s M(P25,P75) 范围 水期类型 枯水期 30 8.74±10.07 2.40(1.40,18.13) 未检出~28.30 丰水期 30 18.14±17.42 12.90(1.40,32.28) 1.40~54.00 学校类型 小学 40 12.59±14.33 3.38(1.40,20.75) 1.40~49.10 中学 20 15.15±16.18 5.30(1.40,28.23) 未检出~54.00 表 2 小学生和中学生暴露于TCM污染的健康风险比较
Table 2. Comparison of health risks of primary and middle school students exposed to TCM pollution
学校类型 年龄/岁 致癌风险/R 非致癌风险/HQ 小学 6~<9 5.36 ×10-6(5.96 ×10-7 ~ 2.05 ×10-5) 0.04(0.00 ~ 0.16) 9~<12 5.03 ×10-6(5.59 ×10-7 ~ 1.96 ×10-5) 0.04(0.01 ~ 0.15) 中学 12~<15 4.23 ×10-6(3.91 ×10-7 ~ 1.51 ×10-5) 0.03(0.00 ~ 0.11) 15~<18 4.15 ×10-6(3.84 ×10-7 ~ 1.48 ×10-5) 0.03(0.00 ~ 0.11) 注: ()内数据为范围。 -
[1] 楚文海, 肖融, 丁顺克, 等. 饮用水中的消毒副产物及其控制策略[J]. 环境科学, 2021, 42(11): 5059-5074. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202111001.htmCHU W H, XIAO R, DING S K, et al. Disinfection by-products in drinking water and their control strategies[J]. Environ Sci, 2021, 42(11): 5059-5074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202111001.htm [2] WEISMAN R J, HEINRICH A, LETKIEWICZ F, et al. Estimating national exposures and potential bladder cancer cases associated with chlorination DBPs in U.S. drinking water[J]. Environ Health Perspect, 2022, 130(8): 87002. doi: 10.1289/EHP9985 [3] VILLANUEVA C M, ESPINOSA A, GRACIA-LAVEDAN E, et al. Exposure to widespread drinking water chemicals, blood inflammation markers, and colorectal cancer[J]. Environ Int, 2021, 157: 106873. doi: 10.1016/j.envint.2021.106873 [4] SRIVASTAV A L, PATEL N, CHAUDHARY V K. Disinfection by-products in drinking water: occurrence, toxicity and abatement[J]. Environ Pollut, 2020, 267: 115474. doi: 10.1016/j.envpol.2020.115474 [5] 邓瑛, 魏建荣, 鄂学礼, 等. 中国六城市饮用水中氯化消毒副产物分布的研究[J]. 卫生研究, 2008, 37(2): 207-210. doi: 10.3969/j.issn.1000-8020.2008.02.022DENG Y, WEI J R, E X L, et al. Study for distribution level of disinfection byproducts in drinking water from six cities in China[J]. J Hyg Res, 2008, 37(2): 207-210. (in Chinese) doi: 10.3969/j.issn.1000-8020.2008.02.022 [6] 郭敏, 胡皓, 张居慧, 等. 2018-2019年银川市生活饮用水三氯甲烷, 四氯化碳监测结果分析[J]. 医学动物防制, 2022, 38(11): 1054-1056, 1060. doi: 10.7629/yxdwfz202211009GUO M, HU H, ZHANG J H, et al. Analysis on monitoring results of trichloromethane and carbon tetrachloride in drinking water of Yinchuan from 2018 to 2019[J]. J Med Pest Control, 2022, 38(11): 1054-1056, 1060. (in Chinese) doi: 10.7629/yxdwfz202211009 [7] 丁勇, 孟昭伟, 嵇志刚, 等. 陕西省农村学校2016年饮用水基本情况[J]. 中国学校卫生, 2019, 40(3): 472-473. doi: 10.16835/j.cnki.1000-9817.2019.03.044DING Y, MENG Z W, JI Z G, et al. Basic situation of drinking water in rural schools in Shaanxi Province in 2016[J]. Chin J Sch Health, 2019, 40(3): 472-473. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2019.03.044 [8] 国家市场监督管理总局. 生活饮用水标准检验方法: GB/T 5750-2023[S]. 北京: 中国标准出版社, 2023.State Administration for Market Regulation. Standard examination methods for drinking water: GB/T 5750-2023[S]. Beijing: China Standards Press, 2023. (in Chinese) [9] CHEN X, HUANG S, CHEN X, et al. Novel insights into impacts of the ″7.20″ extreme rainstorm event on water supply security of Henan Province, China: levels and health risks of tap water disinfection by-products[J]. J Hazard Mater, 2023, 452: 131323. doi: 10.1016/j.jhazmat.2023.131323 [10] U.S. Environmental Protection Agency. Risk assessment guidance for superfund volume Ⅰ: human health evaluation manual (Part A): EPA/540/1-89/002[S]. Washington, D.C. : Office of Emergency and Remedial Response, 1989. [11] RADWAN E K, BARAKAT M H, IBRAHIM M B M. Hazardous inorganic disinfection by-products in Egypt's tap drinking water: occurrence and human health risks assessment studies[J]. Sci Total Environ, 2021, 797: 149069. doi: 10.1016/j.scitotenv.2021.149069 [12] 段晓丽. 中国人群暴露参数手册(儿童卷)概要[M]. 北京: 中国环境出版社, 2016.DUAN X L. Highlight of Chinese children's exposure factors handbook[M]. Beijing: Environment Press, 2016. (in Chinese) [13] 国家市场监督管理总局. 生活饮用水卫生标准: GB 5749—2022[S]. 北京: 中国标准出版社, 2022.State Administration for Market Regulation. Standards for drinking water quality: GB 5749-2022[S]. Beijing: China Standards Press, 2022. (in Chinese) [14] 张欣烨, 张杰, 彭靖, 等. 河南省农村学校饮用水重金属空间分布特征和健康风险评估[J]. 中国学校卫生, 2023, 44(2): 307-310, 315. doi: 10.16835/j.cnki.1000-9817.2023.02.034ZHANG X Y, ZHANG J, PENG J, et al. Spatial distribution and health risk assessment of heavy metals in drinking water of rural schools in Henan Province[J]. Chin J Sch Health, 2023, 44(2): 307-310, 315. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2023.02.034 [15] 王晓霜, 董少霞. 中国部分城市饮用水中三卤甲烷类健康风险评价[J]. 中国公共卫生, 2020, 36(9): 1384-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW202009029.htmWANG X S, DONG S X. Health risk assessment of trihalomethanes in drinking water in some cities of China: a literature study[J]. Chin J Public Health, 2020, 36(9): 1384-1388. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW202009029.htm [16] 王冰, 张永, 韩志宇, 等. 2018—2020年某市饮用水中消毒副产物监测结果及风险评估[J]. 实用预防医学, 2022, 29(2): 169-173. doi: 10.3969/j.issn.1006-3110.2022.02.011WANG B, ZHANG Y, HAN Z Y, et al. Surveillance results and risk assessment of disinfection by-products in drinking water in a city, 2018-2020[J]. Pract Prev Med, 2022, 29(2): 169-173. (in Chinese) doi: 10.3969/j.issn.1006-3110.2022.02.011 [17] LI Y, ZHANG L, YANG L, et al. Hydrolysis characteristics and risk assessment of a widely detected emerging drinking water disinfection-by-product-2, 6-dichloro-1, 4-benzoquinone in the water environment of Tianjin (China)[J]. Sci Total Environ, 2021, 765: 144394. doi: 10.1016/j.scitotenv.2020.144394 [18] YU Y, MA X, CHEN R, et al. The occurrence and transformation behaviors of disinfection byproducts in drinking water distribution systems in rural areas of eastern China[J]. Chemosphere, 2019, 228: 101-109. doi: 10.1016/j.chemosphere.2019.04.095 [19] 费娟, 于洋, 郑浩, 等. 次氯酸钠消毒饮用水中消毒副产物健康风险评估[J]. 环境卫生学杂志, 2023, 13(9): 686-691. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYX202309008.htmFEI J, YU Y, ZHENG H, et al. Health risk assessment of disinfection by-products in drinking water disinfected by sodium hypochlorite[J]. J Environ Hyg, 2023, 13(9): 686-691. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWYX202309008.htm [20] 甄伟前, 焦佳佳, 李忠禹, 等. 城乡供水管网中消毒副产物的浓度水平与分布规律[J]. 环境科学学报, 2023, 43(3): 186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202303017.htmZHEN W Q, JIAO J J, LI Z Y, et al. Occurrence and variability of disinfection byproducts in a centralized water distribution system in urban and rural communities[J]. Acta Sci Circumst, 2023, 43(3): 186-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202303017.htm [21] 张磊, 赵亮, 王睿, 等. 农村儿童水氟健康风险评估[J]. 公共卫生与预防医学, 2018, 29(4): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-FBYF201804016.htmZHANG L, ZHAO L, WANG R, et al. Rural children's fluoride health risk assessment[J]. J Public Health Prev Med, 2018, 29(4): 57-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FBYF201804016.htm [22] 于影, 陈儒雅, 潘霖霖, 等. 多水源供水管网中消毒副产物风险分析[J]. 环境工程学报, 2021, 15(5): 1803-1809. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202105035.htmYU Y, CHEN R Y, PAN L L, et al. Risk analysis of disinfection by-products in multi-source drinking water distribution system[J]. Chin J Environ Eng, 2021, 15(5): 1803-1809. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202105035.htm [23] ZHOU X, ZHENG L, CHEN S, et al. Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China[J]. Ecotox Environ Safe, 2019, 171: 813-822. doi: 10.1016/j.ecoenv.2018.12.106 -

计量
- 文章访问数: 270
- HTML全文浏览量: 153
- PDF下载量: 37
- 被引次数: 0