Longitudinal associations between organophosphate esters exposure and blood pressure among school-aged children in Beijing
-
摘要:
目的 分析儿童有机磷酸酯(OPEs)暴露与血压的纵向关联,为识别OPEs暴露对儿童健康影响提供参考依据。 方法 采用病例队列研究设计,纳入404名来自北京儿童生长与健康队列(PROC)的儿童,于2018年进行基线体格检查、尿液收集、问卷调查,并于2019—2020年和2023年开展随访,根据随访期间是否新发血压偏高分为病例组(n=140)和对照组(n=264)。采用高效液相色谱-质谱联用法检测尿液中二乙基磷酸酯(DEP)、双(2-氯乙基)磷酸酯(BCEP)、双(1-氯-2-丙基)磷酸酯(BCIPP)、二苯基磷酸酯(DPHP)、二丁基磷酸酯(DnBP)、双(1,3-二氯-2-丙基)磷酸酯(BDCIPP)、双(2-丁氧基乙基)磷酸酯(BBOEP)、双(2-丁氧基乙基)-2-羟基乙基磷酸酯(BBOEHEP)和4-羟基苯基二苯基磷酸酯(4-OH-TPHP)9种OPEs代谢物质量体积浓度;建立广义线性混合模型和Quantile g-computation模型分析OPEs单独及混合暴露与儿童血压的纵向关联。 结果 3个时点(基线、第1次随访、第2次随访)DEP、BCEP、BCIPP、DPHP、DnBP、BDCIPP、BBOEP、BBOEHEP、4-OH-TPHP检出率范围分别为27.7%~92.1%,24.0%~99.3%,39.2%~90.9%。未调整儿童性别、年龄、体质量指数、Tanner分期、父母受教育程度、家庭月收入、高血压家族史等协变量前,BDCIPP质量体积浓度增加和OPEs混合暴露均可能降低儿童收缩压(β值分别为-0.85,-2.40,95%CI分别为-1.69~-0.01,-3.30~-1.50,P值均<0.05);而调整协变量后,OPEs单独或混合暴露与儿童血压的纵向关联均无统计学意义(P值均>0.05)。 结论 北京学龄儿童普遍暴露于OPEs,虽未发现OPEs暴露与儿童血压之间存在纵向关联,仍建议应尽可能减少儿童暴露。 Abstract:Objective To explore the longitudinal association between organophosphate esters (OPEs) exposure and blood pressure in children, so as to provide a reference for identifying the effects of OPEs exposure on child health. Methods A total of 404 children from the Beijing Child Growth and Health Cohort (PROC) were enrolled using a case cohort study design, baseline physical examination, urine collection, questionnaires survey were administered in 2018 and follow-up surveys in 2019-2020 and 2023. Participants were divided into case group (n=140) and control group (n=264) according to the observation of new onset of high blood pressure during the follow-up period. High performance liquid chromatography-tandem mass spectrometry was used to detect diethyl phosphate (DEP), bis (2-chloroethyl) phosphate (BCEP), bis (1-chloro-2-propyl) phosphate, (BCIPP), diphenyl phosphate(DPHP), dibutyl phosphate (DnBP), bis (1, 3-dichloro-2-propyl) phosphate(BDCIPP), bis(2-butoxyethyl) phosphate(BBOEP), bis (2-butoxyethyl) 2-hydroxyethyl phosphate (BBOEHEP), 4-hydroxyphenyl diphenyl phosphate (4-OH-TPHP). Generalized linear mixed models and Quantile g-computation models were developed to analyze the longitudinal associations between OPEs individual/mixed exposure and blood pressure in children. Results The detection range of 9 OPEs metabolites, including DEP, BCEP, BCIPP, DPHP, DnBP, BDCIPP, BBOEP, BBOEHEP and 4-OH-TPHP at three time points (baseline, first follow-up and second follow-up) were 27.7%-92.1%, 24.0%-99.3% and 39.2%-90.9% respectively. Without adjustment for covariates such as gender, age, body mass index, Tanner stage, parental education, and monthly household income, and family history of hypertension, the increase of BDCIPP concentration and mixed exposure of OPEs may reduce children's systolic blood pressure(β=-0.85, -2.40, 95%CI=-1.69-0.01, -3.30-1.50, P<0.05). After adjusting for the covariates, the longitudinal association of individual OPEs or mixed exposure with pediatric BP was not statistically significant (P>0.05). Conclusion Children are commonly exposed to OPEs, and although no significant longitudinal associations are observed between exposure to OPEs and blood pressure among school-aged children in Beijing, it is recommended that child exposure should be minimized whenever possible. -
Key words:
- Organophosphate /
- Blood pressure /
- Longitudinal studies /
- Child
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 病例组与对照组儿童不同时期BMI及血压比较[M(P25,P75)]
Table 1. Comparison of BMI and blood pressure between case group and control group[M(P25, P75)]
组别 人数 BMI/(kg·m-2) 收缩压/mmHg 舒张压/mmHg 基线 第1次随访 第2次随访 基线 第1次随访 第2次随访 基线 第1次随访 第2次随访 病例组 140 16.6(15.3,19.0) 17.3(15.6,20.2) 21.3(18.0,25.4) 103(96,107) 106(100,116) 120(109,125) 54(49,60) 59(53,63) 65(61,72) 对照组 264 15.5(14.3,16.8) 15.9(14.4,17.6) 18.6(16.1,21.9) 96(89,102) 99(94,104) 107(101,113) 53(48,58) 55(52,58) 61(57,66) 合计 404 15.8(14.7,17.5) 16.3(14.8,18.4) 19.2(16.6,23.5) 98(91,105) 101(96,107) 109(103,118) 54(49,59) 57(53,60) 62(58,68) Z值 4.90 5.21 4.43 6.04 8.31 9.49 1.81 5.25 5.63 P值 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.07 < 0.01 < 0.01 注: 1 mmHg=0.133 kPa。 表 2 不同时期儿童尿OPEs代谢物检测质量体积浓度比较[μg/L,M(P25,P75)]
Table 2. Comparison of urinary OPEs metabolites concentrations in children at different periods[μg/L, M(P25, P75)]
时期 人数 DEP BCEP BCIPP DPHP DnBP BDCIPP BBOEP BBOEHEP 4-OH-TPHP 基线 379 1.17(0.53, 1.85) < LOD(< LOD, 1.14) < LOD(< LOD, 5.43) 2.63(1.71, 3.71) 1.77(< LOD, 3.88) 2.34(0.49, 4.83) 0.56(0.24, 1.41) 0.13(< LOD, 0.23) 0.36(< LOD, 0.88) 第1次随访 400 0.79(0.31, 1.40) < LOD(< LOD, 0.91) < LOD(< LOD,<LOD) 2.28(1.80, 3.38) 2.07(< LOD, 8.61) 2.87(1.26, 5.95) 1.35(0.68, 2.92) 0.10(< LOD, 0.18) 0.15(< LOD, 0.33) 第2次随访 383 0.45(0.25, 0.82) < LOD(< LOD, 1.42) 6.03(< LOD, 9.19) 3.44(2.08, 7.81) 1.52(< LOD, 3.29) 2.78(1.65, 5.43) 1.53(0.36, 2.46) 0.17(0.11, 0.25) 0.30(< LOD, 0.67) H值 117.17 6.97 146.16 80.39 13.80 17.01 79.81 68.14 81.47 P值 < 0.01 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 注:质量体积浓度未进行比重校正。 表 3 OPEs单独暴露对儿童血压的纵向关联[β值(95%CI),n=404]
Table 3. Longitudinal associations of OPEs individual exposure with blood pressure in children[β(95%CI), n=404]
自变量 收缩压 舒张压 调整前 调整后 调整前 调整后 DEP -1.03(-2.21~0.15) -0.25(-1.35~0.85) 0.35(-0.54~1.23) 0.49(-0.39~1.38) DPHP -0.94(-2.69~0.81) -0.46(-2.07~1.15) -0.28(-1.59~1.03) 0.06(-1.26~1.37) DnBP 0.22(-0.91~1.36) 0.40(-0.64~1.45) -0.23(-1.11~0.65) -0.15(-1.02~0.73) BDCIPP -0.85(-1.69~-0.01)* -0.63(-1.41~0.14) -0.47(-1.11~0.16) -0.44(-1.07~0.20) BBOEP -0.75(-1.66~0.16) -0.65(-1.50~0.19) 0.12(-0.57~0.81) 0.11(-0.58~0.80) BBOEHEP -0.61(-2.47~1.26) 0.53(-1.22~2.28) 0.80(-0.58~2.18) 1.02(-0.36~2.39) 4-OH-TPhP -0.77(-1.76~0.22) -0.63(-1.54~0.28) -0.08(-0.82~0.67) 0.01(-0.72~0.75) 注: *P<0.05。调整儿童性别、年龄、BMI、Tanner分期、父母受教育程度、家庭月收入、高血压家族史。 -
[1] ZHANG T, BAI X Y, LU S Y, et al. Urinary metabolites of organophosphate flame retardants in China: health risk from tris(2-chloroethyl) phosphate (TCEP) exposure[J]. Environ Int, 2018, 121(Pt 2): 1363-1371. [2] PATISAUL H B, BEHL M, BIRNBAUM L S, et al. Beyond cholinesterase inhibition: developmental neurotoxicity of organophosphate ester flame retardants and plasticizers[J]. Environ Health Perspect, 2021, 129(10): 105001. doi: 10.1289/EHP9285 [3] GUO Y, LIANG C, ZENG M X, et al. An overview of organophosphate esters and their metabolites in humans: analytical methods, occurrence, and biomonitoring[J]. Sci Total Environ, 2022, 848: 157669. doi: 10.1016/j.scitotenv.2022.157669 [4] LI Y, LI D, CHEN J, et al. Presence of organophosphate esters in plasma of patients with hypertension in Hubei Province, China[J]. Environ Sci Pollut Res Int, 2020, 27(19): 24059-24069. doi: 10.1007/s11356-020-08563-0 [5] LUO K, ZHANG R, AIMUZI R, et al. Exposure to organophosphate esters and metabolic syndrome in adults[J]. Environ Int, 2020, 143: 105941. doi: 10.1016/j.envint.2020.105941 [6] HU L, YU M, LI Y, et al. Association of exposure to organophosphate esters with increased blood pressure in children and adolescents[J]. Environ Pollut, 2022, 295: 118685. doi: 10.1016/j.envpol.2021.118685 [7] YAN Y, LI S, GUO Y, et al. Life-course cumulative burden of body mass index and blood pressure on progression of left ventricular mass and geometry in midlife: the Bogalusa Heart Study[J]. Circ Res, 2020, 126(5): 633-643. doi: 10.1161/CIRCRESAHA.119.316045 [8] DE SIMONE G, MANCUSI C, HANSSEN H, et al. Hypertension in children and adolescents[J]. Eur Heart J, 2022, 43(35): 3290-3301. doi: 10.1093/eurheartj/ehac328 [9] 奴比娅·阿马尔江, 江晓峰, 唐睿姝, 等. 北京市6~9岁儿童体脂肪分布与血压关联的随访研究[J]. 中国学校卫生, 2023, 44(3): 432-435. doi: 10.16835/j.cnki.1000-9817.2023.03.026AMAERJIANG N, JIANG X F, TANG R S, et al. A follow-up study of body fat distribution and blood pressure among 6-9 years old children in Beijing[J]. Chin J Sch Health, 2023, 44(3): 432-435. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2023.03.026 [10] 范晖, 闫银坤, 米杰. 中国3~17岁儿童性别、年龄别和身高别血压参照标准[J]. 中华高血压杂志, 2017, 25(5): 428-435. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ201705010.htmFAN H, YAN Y K, MI J. Updating blood pressure references for Chinese children aged 3-17 years[J]. Chin J Hypertens, 2017, 25(5): 428-435. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ201705010.htm [11] KOOPMAN-VERHOEFF M E, GREDVIG-ARDITO C, BARKER D H, et al. Classifying pubertal development using child and parent report: comparing the pubertal development scales to Tanner staging[J]. J Adolesc Health, 2020, 66(5): 597-602. doi: 10.1016/j.jadohealth.2019.11.308 [12] LEE G, KIM S, PARK H, et al. Variability of urinary creatinine, specific gravity, and osmolality over the course of pregnancy: implications in exposure assessment among pregnant women[J]. Environ Res, 2021, 198: 110473. doi: 10.1016/j.envres.2020.110473 [13] DODSON R E, PEROVICH L J, COVACI A, et al. After the PBDE phase-out: a broad suite of flame retardants in repeat house dust samples from California[J]. Environ Sci Technol, 2012, 46(24): 13056-13066. doi: 10.1021/es303879n [14] LI J, ZHAO L, LETCHER R J, et al. A review on organophosphate ester (OPE) flame retardants and plasticizers in foodstuffs: levels, distribution, human dietary exposure, and future directions[J]. Environ Int, 2019, 127: 35-51. doi: 10.1016/j.envint.2019.03.009 [15] BLUM A, BEHL M, BIRNBAUM L, et al. Organophosphate Ester Flame Retardants: are they a regrettable substitution for polybrominated diphenyl ethers?[J]. Environ Sci Technol Lett, 2019, 6(11): 638-649. doi: 10.1021/acs.estlett.9b00582 [16] ZHANG B, LU S, HUANG M, et al. Urinary metabolites of organophosphate flame retardants in 0-5-year-old children: potential exposure risk for inpatients and home-stay infants[J]. Environ Pollut, 2018, 243(Pt A): 318-325. [17] CHEN Y, FANG J, REN L, et al. Urinary metabolites of organophosphate esters in children in South China: concentrations, profiles and estimated daily intake[J]. Environ Pollut, 2018, 235: 358-364. doi: 10.1016/j.envpol.2017.12.092 [18] DING J, DENG T, YE X, et al. Urinary metabolites of organophosphate esters and implications for exposure pathways in adolescents from Eastern China[J]. Sci Total Environ, 2019, 695: 133894. doi: 10.1016/j.scitotenv.2019.133894 [19] LI M, YAO Y, WANG Y, et al. Organophosphate ester flame retardants and plasticizers in a Chinese population: significance of hydroxylated metabolites and implication for human exposure[J]. Environ Pollut, 2020, 257: 113633. doi: 10.1016/j.envpol.2019.113633 [20] OSPINA M, JAYATILAKA N K, WONG L Y, et al. Exposure to organophosphate flame retardant chemicals in the U.S. general population: data from the 2013-2014 National Health and Nutrition Examination Survey[J]. Environ Int, 2018, 110: 32-41. doi: 10.1016/j.envint.2017.10.001 [21] BOYLE M, BUCKLEY J P, QUIRÓS-ALCALÁ L. Associations between urinary organophosphate ester metabolites and measures of adiposity among U.S. children and adults: NHANES 2013-2014[J]. Environ Int, 2019, 127: 754-763. doi: 10.1016/j.envint.2019.03.055 [22] TAO Y, HU L, LIU L, et al. Prenatal exposure to organophosphate esters and neonatal thyroid-stimulating hormone levels: a birth cohort study in Wuhan, China[J]. Environ Int, 2021, 156: 106640. doi: 10.1016/j.envint.2021.106640 [23] PERCY Z, CHEN A, YANG W, et al. Childhood urinary organophosphate esters and cognitive abilities in a longitudinal cohort study[J]. Environ Res, 2022, 215(Pt 1): 114265. [24] GUO X, KE Y, WU B, et al. Exploratory analysis of the association between organophosphate ester mixtures with high blood pressure of children and adolescents aged 8-17 years: cross-sectional findings from the National Health and Nutrition Examination Survey[J]. Environ Sci Pollut Res Int, 2023, 30(9): 22900-22912. -

计量
- 文章访问数: 268
- HTML全文浏览量: 138
- PDF下载量: 36
- 被引次数: 0