留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京学龄儿童有机磷酸酯暴露与血压的纵向关联

肖惠迪 李梦龙 叶尔林·阿斯哈尔 关梦颖 邹雨辰 吐尔逊阿依·阿不都米吉提 赵瑞兰 胡翼飞

肖惠迪, 李梦龙, 叶尔林·阿斯哈尔, 关梦颖, 邹雨辰, 吐尔逊阿依·阿不都米吉提, 赵瑞兰, 胡翼飞. 北京学龄儿童有机磷酸酯暴露与血压的纵向关联[J]. 中国学校卫生, 2024, 45(4): 560-564. doi: 10.16835/j.cnki.1000-9817.2024129
引用本文: 肖惠迪, 李梦龙, 叶尔林·阿斯哈尔, 关梦颖, 邹雨辰, 吐尔逊阿依·阿不都米吉提, 赵瑞兰, 胡翼飞. 北京学龄儿童有机磷酸酯暴露与血压的纵向关联[J]. 中国学校卫生, 2024, 45(4): 560-564. doi: 10.16835/j.cnki.1000-9817.2024129
XIAO Huidi, LI Menglong, ASIHAER Yeerlin, GUAN Mengying, ZOU Yuchen, ABUDUMIJITI Tuerxunayi, ZHAO Ruilan, HU Yifei. Longitudinal associations between organophosphate esters exposure and blood pressure among school-aged children in Beijing[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(4): 560-564. doi: 10.16835/j.cnki.1000-9817.2024129
Citation: XIAO Huidi, LI Menglong, ASIHAER Yeerlin, GUAN Mengying, ZOU Yuchen, ABUDUMIJITI Tuerxunayi, ZHAO Ruilan, HU Yifei. Longitudinal associations between organophosphate esters exposure and blood pressure among school-aged children in Beijing[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(4): 560-564. doi: 10.16835/j.cnki.1000-9817.2024129

北京学龄儿童有机磷酸酯暴露与血压的纵向关联

doi: 10.16835/j.cnki.1000-9817.2024129
基金项目: 

首都卫生发展科研专项项目 首发2022-1G-4262

国家自然科学基金项目 82073574

详细信息
    作者简介:

    肖惠迪(1998-),女,北京市人,在读硕士,主要研究方向为儿童青少年慢性病预防

    通讯作者:

    赵瑞兰,E-mail: zhrl_1999@163.com

    胡翼飞,E-mail: huyifei@yahoo.com

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R179 TQ453.2+2 R544

Longitudinal associations between organophosphate esters exposure and blood pressure among school-aged children in Beijing

  • 摘要:   目的  分析儿童有机磷酸酯(OPEs)暴露与血压的纵向关联,为识别OPEs暴露对儿童健康影响提供参考依据。  方法  采用病例队列研究设计,纳入404名来自北京儿童生长与健康队列(PROC)的儿童,于2018年进行基线体格检查、尿液收集、问卷调查,并于2019—2020年和2023年开展随访,根据随访期间是否新发血压偏高分为病例组(n=140)和对照组(n=264)。采用高效液相色谱-质谱联用法检测尿液中二乙基磷酸酯(DEP)、双(2-氯乙基)磷酸酯(BCEP)、双(1-氯-2-丙基)磷酸酯(BCIPP)、二苯基磷酸酯(DPHP)、二丁基磷酸酯(DnBP)、双(1,3-二氯-2-丙基)磷酸酯(BDCIPP)、双(2-丁氧基乙基)磷酸酯(BBOEP)、双(2-丁氧基乙基)-2-羟基乙基磷酸酯(BBOEHEP)和4-羟基苯基二苯基磷酸酯(4-OH-TPHP)9种OPEs代谢物质量体积浓度;建立广义线性混合模型和Quantile g-computation模型分析OPEs单独及混合暴露与儿童血压的纵向关联。  结果  3个时点(基线、第1次随访、第2次随访)DEP、BCEP、BCIPP、DPHP、DnBP、BDCIPP、BBOEP、BBOEHEP、4-OH-TPHP检出率范围分别为27.7%~92.1%,24.0%~99.3%,39.2%~90.9%。未调整儿童性别、年龄、体质量指数、Tanner分期、父母受教育程度、家庭月收入、高血压家族史等协变量前,BDCIPP质量体积浓度增加和OPEs混合暴露均可能降低儿童收缩压(β值分别为-0.85,-2.40,95%CI分别为-1.69~-0.01,-3.30~-1.50,P值均<0.05);而调整协变量后,OPEs单独或混合暴露与儿童血压的纵向关联均无统计学意义(P值均>0.05)。  结论  北京学龄儿童普遍暴露于OPEs,虽未发现OPEs暴露与儿童血压之间存在纵向关联,仍建议应尽可能减少儿童暴露。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • 表  1  病例组与对照组儿童不同时期BMI及血压比较[M(P25P75)]

    Table  1.   Comparison of BMI and blood pressure between case group and control group[M(P25, P75)]

    组别 人数 BMI/(kg·m-2) 收缩压/mmHg 舒张压/mmHg
    基线 第1次随访 第2次随访 基线 第1次随访 第2次随访 基线 第1次随访 第2次随访
    病例组 140 16.6(15.3,19.0) 17.3(15.6,20.2) 21.3(18.0,25.4) 103(96,107) 106(100,116) 120(109,125) 54(49,60) 59(53,63) 65(61,72)
    对照组 264 15.5(14.3,16.8) 15.9(14.4,17.6) 18.6(16.1,21.9) 96(89,102) 99(94,104) 107(101,113) 53(48,58) 55(52,58) 61(57,66)
    合计 404 15.8(14.7,17.5) 16.3(14.8,18.4) 19.2(16.6,23.5) 98(91,105) 101(96,107) 109(103,118) 54(49,59) 57(53,60) 62(58,68)
    Z 4.90 5.21 4.43 6.04 8.31 9.49 1.81 5.25 5.63
    P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.07 < 0.01 < 0.01
    注: 1 mmHg=0.133 kPa。
    下载: 导出CSV

    表  2  不同时期儿童尿OPEs代谢物检测质量体积浓度比较[μg/L,M(P25P75)]

    Table  2.   Comparison of urinary OPEs metabolites concentrations in children at different periods[μg/L, M(P25, P75)]

    时期 人数 DEP BCEP BCIPP DPHP DnBP BDCIPP BBOEP BBOEHEP 4-OH-TPHP
    基线 379 1.17(0.53, 1.85) < LOD(< LOD, 1.14) < LOD(< LOD, 5.43) 2.63(1.71, 3.71) 1.77(< LOD, 3.88) 2.34(0.49, 4.83) 0.56(0.24, 1.41) 0.13(< LOD, 0.23) 0.36(< LOD, 0.88)
    第1次随访 400 0.79(0.31, 1.40) < LOD(< LOD, 0.91) < LOD(< LOD,<LOD) 2.28(1.80, 3.38) 2.07(< LOD, 8.61) 2.87(1.26, 5.95) 1.35(0.68, 2.92) 0.10(< LOD, 0.18) 0.15(< LOD, 0.33)
    第2次随访 383 0.45(0.25, 0.82) < LOD(< LOD, 1.42) 6.03(< LOD, 9.19) 3.44(2.08, 7.81) 1.52(< LOD, 3.29) 2.78(1.65, 5.43) 1.53(0.36, 2.46) 0.17(0.11, 0.25) 0.30(< LOD, 0.67)
    H 117.17 6.97 146.16 80.39 13.80 17.01 79.81 68.14 81.47
    P < 0.01 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
    注:质量体积浓度未进行比重校正。
    下载: 导出CSV

    表  3  OPEs单独暴露对儿童血压的纵向关联[β值(95%CI),n=404]

    Table  3.   Longitudinal associations of OPEs individual exposure with blood pressure in children[β(95%CI), n=404]

    自变量 收缩压 舒张压
    调整前 调整后 调整前 调整后
    DEP -1.03(-2.21~0.15) -0.25(-1.35~0.85) 0.35(-0.54~1.23) 0.49(-0.39~1.38)
    DPHP -0.94(-2.69~0.81) -0.46(-2.07~1.15) -0.28(-1.59~1.03) 0.06(-1.26~1.37)
    DnBP 0.22(-0.91~1.36) 0.40(-0.64~1.45) -0.23(-1.11~0.65) -0.15(-1.02~0.73)
    BDCIPP -0.85(-1.69~-0.01)* -0.63(-1.41~0.14) -0.47(-1.11~0.16) -0.44(-1.07~0.20)
    BBOEP -0.75(-1.66~0.16) -0.65(-1.50~0.19) 0.12(-0.57~0.81) 0.11(-0.58~0.80)
    BBOEHEP -0.61(-2.47~1.26) 0.53(-1.22~2.28) 0.80(-0.58~2.18) 1.02(-0.36~2.39)
    4-OH-TPhP -0.77(-1.76~0.22) -0.63(-1.54~0.28) -0.08(-0.82~0.67) 0.01(-0.72~0.75)
    注: *P<0.05。调整儿童性别、年龄、BMI、Tanner分期、父母受教育程度、家庭月收入、高血压家族史。
    下载: 导出CSV
  • [1] ZHANG T, BAI X Y, LU S Y, et al. Urinary metabolites of organophosphate flame retardants in China: health risk from tris(2-chloroethyl) phosphate (TCEP) exposure[J]. Environ Int, 2018, 121(Pt 2): 1363-1371.
    [2] PATISAUL H B, BEHL M, BIRNBAUM L S, et al. Beyond cholinesterase inhibition: developmental neurotoxicity of organophosphate ester flame retardants and plasticizers[J]. Environ Health Perspect, 2021, 129(10): 105001. doi: 10.1289/EHP9285
    [3] GUO Y, LIANG C, ZENG M X, et al. An overview of organophosphate esters and their metabolites in humans: analytical methods, occurrence, and biomonitoring[J]. Sci Total Environ, 2022, 848: 157669. doi: 10.1016/j.scitotenv.2022.157669
    [4] LI Y, LI D, CHEN J, et al. Presence of organophosphate esters in plasma of patients with hypertension in Hubei Province, China[J]. Environ Sci Pollut Res Int, 2020, 27(19): 24059-24069. doi: 10.1007/s11356-020-08563-0
    [5] LUO K, ZHANG R, AIMUZI R, et al. Exposure to organophosphate esters and metabolic syndrome in adults[J]. Environ Int, 2020, 143: 105941. doi: 10.1016/j.envint.2020.105941
    [6] HU L, YU M, LI Y, et al. Association of exposure to organophosphate esters with increased blood pressure in children and adolescents[J]. Environ Pollut, 2022, 295: 118685. doi: 10.1016/j.envpol.2021.118685
    [7] YAN Y, LI S, GUO Y, et al. Life-course cumulative burden of body mass index and blood pressure on progression of left ventricular mass and geometry in midlife: the Bogalusa Heart Study[J]. Circ Res, 2020, 126(5): 633-643. doi: 10.1161/CIRCRESAHA.119.316045
    [8] DE SIMONE G, MANCUSI C, HANSSEN H, et al. Hypertension in children and adolescents[J]. Eur Heart J, 2022, 43(35): 3290-3301. doi: 10.1093/eurheartj/ehac328
    [9] 奴比娅·阿马尔江, 江晓峰, 唐睿姝, 等. 北京市6~9岁儿童体脂肪分布与血压关联的随访研究[J]. 中国学校卫生, 2023, 44(3): 432-435. doi: 10.16835/j.cnki.1000-9817.2023.03.026

    AMAERJIANG N, JIANG X F, TANG R S, et al. A follow-up study of body fat distribution and blood pressure among 6-9 years old children in Beijing[J]. Chin J Sch Health, 2023, 44(3): 432-435. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2023.03.026
    [10] 范晖, 闫银坤, 米杰. 中国3~17岁儿童性别、年龄别和身高别血压参照标准[J]. 中华高血压杂志, 2017, 25(5): 428-435. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ201705010.htm

    FAN H, YAN Y K, MI J. Updating blood pressure references for Chinese children aged 3-17 years[J]. Chin J Hypertens, 2017, 25(5): 428-435. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ201705010.htm
    [11] KOOPMAN-VERHOEFF M E, GREDVIG-ARDITO C, BARKER D H, et al. Classifying pubertal development using child and parent report: comparing the pubertal development scales to Tanner staging[J]. J Adolesc Health, 2020, 66(5): 597-602. doi: 10.1016/j.jadohealth.2019.11.308
    [12] LEE G, KIM S, PARK H, et al. Variability of urinary creatinine, specific gravity, and osmolality over the course of pregnancy: implications in exposure assessment among pregnant women[J]. Environ Res, 2021, 198: 110473. doi: 10.1016/j.envres.2020.110473
    [13] DODSON R E, PEROVICH L J, COVACI A, et al. After the PBDE phase-out: a broad suite of flame retardants in repeat house dust samples from California[J]. Environ Sci Technol, 2012, 46(24): 13056-13066. doi: 10.1021/es303879n
    [14] LI J, ZHAO L, LETCHER R J, et al. A review on organophosphate ester (OPE) flame retardants and plasticizers in foodstuffs: levels, distribution, human dietary exposure, and future directions[J]. Environ Int, 2019, 127: 35-51. doi: 10.1016/j.envint.2019.03.009
    [15] BLUM A, BEHL M, BIRNBAUM L, et al. Organophosphate Ester Flame Retardants: are they a regrettable substitution for polybrominated diphenyl ethers?[J]. Environ Sci Technol Lett, 2019, 6(11): 638-649. doi: 10.1021/acs.estlett.9b00582
    [16] ZHANG B, LU S, HUANG M, et al. Urinary metabolites of organophosphate flame retardants in 0-5-year-old children: potential exposure risk for inpatients and home-stay infants[J]. Environ Pollut, 2018, 243(Pt A): 318-325.
    [17] CHEN Y, FANG J, REN L, et al. Urinary metabolites of organophosphate esters in children in South China: concentrations, profiles and estimated daily intake[J]. Environ Pollut, 2018, 235: 358-364. doi: 10.1016/j.envpol.2017.12.092
    [18] DING J, DENG T, YE X, et al. Urinary metabolites of organophosphate esters and implications for exposure pathways in adolescents from Eastern China[J]. Sci Total Environ, 2019, 695: 133894. doi: 10.1016/j.scitotenv.2019.133894
    [19] LI M, YAO Y, WANG Y, et al. Organophosphate ester flame retardants and plasticizers in a Chinese population: significance of hydroxylated metabolites and implication for human exposure[J]. Environ Pollut, 2020, 257: 113633. doi: 10.1016/j.envpol.2019.113633
    [20] OSPINA M, JAYATILAKA N K, WONG L Y, et al. Exposure to organophosphate flame retardant chemicals in the U.S. general population: data from the 2013-2014 National Health and Nutrition Examination Survey[J]. Environ Int, 2018, 110: 32-41. doi: 10.1016/j.envint.2017.10.001
    [21] BOYLE M, BUCKLEY J P, QUIRÓS-ALCALÁ L. Associations between urinary organophosphate ester metabolites and measures of adiposity among U.S. children and adults: NHANES 2013-2014[J]. Environ Int, 2019, 127: 754-763. doi: 10.1016/j.envint.2019.03.055
    [22] TAO Y, HU L, LIU L, et al. Prenatal exposure to organophosphate esters and neonatal thyroid-stimulating hormone levels: a birth cohort study in Wuhan, China[J]. Environ Int, 2021, 156: 106640. doi: 10.1016/j.envint.2021.106640
    [23] PERCY Z, CHEN A, YANG W, et al. Childhood urinary organophosphate esters and cognitive abilities in a longitudinal cohort study[J]. Environ Res, 2022, 215(Pt 1): 114265.
    [24] GUO X, KE Y, WU B, et al. Exploratory analysis of the association between organophosphate ester mixtures with high blood pressure of children and adolescents aged 8-17 years: cross-sectional findings from the National Health and Nutrition Examination Survey[J]. Environ Sci Pollut Res Int, 2023, 30(9): 22900-22912.
  • 加载中
表(3)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  8
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2024-03-19
  • 网络出版日期:  2024-04-25
  • 刊出日期:  2024-04-25

目录

    /

    返回文章
    返回