Differential characteristics of motor development levels, inhibitory control and cognitive flexibility processing in preschool children
-
摘要:
目的 探讨幼儿时期动作发展水平与抑制控制、认知灵活性的神经加工差异特征,为幼儿动作学习和认知发展提供依据。 方法 于2023年3月20—31日,在西安市某2所幼儿园招募了84名4~6岁儿童,采用MOBAK-KG动作技能评估量表评估幼儿动作发展水平;采用GO/no-go任务范式测试幼儿抑制控制能力,维度卡片变换排序(DCCS)任务范式测试幼儿认知灵活性;通过功能近红外光谱脑成像(fNIRS)监测幼儿在完成抑制控制和认知灵活性任务期间大脑前额叶皮层血氧动力学信号,采用Matlab软件和Homer 2插件计算幼儿任务期间前额叶氧合血红蛋白浓度。 结果 动作技能高分组在抑制控制和认知灵活性任务期间任务正确率[0.95(0.92,0.97),(0.54±0.12) ]均高于动作技能低分组[0.93(0.85,0.97),(0.45±0.13) ](Z/t值分别为-2.09,3.14,P值均<0.05)。抑制控制任务期间,动作技能高分组在左、右侧背外侧前额叶皮层(L-DLPFC、R-DLPFC),左、右侧三角部布罗卡氏区(L-PTBA、R-PTBA),左、右侧额极区(L-FPA、R-FPA)氧合血红蛋白浓度[0.24(0.10,0.41),0.34(0.16,0.62);0.30(0.07,0.52),0.26(0.09,0.53);0.15(0.01,0.43),0.34(0.10,0.67)mol/L ]均大于动作技能低分组[0.04(-0.13,0.15),0.00(-0.12,0.11);-0.01(-0.17,0.14),0.04(-0.14,0.16);-0.01(-0.16,0.12),-0.03(-0.21,0.15)mol/L ](Z值分别为-4.83,-5.57,-4.77,-4.10,-3.45,-5.74,P值均<0.01);认知灵活性任务期间,动作技能高分组在L-DLPFC、R-DLPFC、L-PTBA、R-PTBA、L-FPA、R-FPA脑区氧合血红蛋白浓度[0.21(0.03,0.36),0.28(0.15,0.45),0.15(0.05,0.30),0.20(0.05,0.37),0.04(-0.17,0.26),0.14(-0.08,0.40)mol/L ]均大于动作技能低分组[0.02(-0.20,0.23),0.02(-0.12,0.21),0.00(-0.22,0.16),0.00(-0.16,0.15),-0.05(-0.25,0.06),0.01(-0.23,0.20)mol/L ](Z值分别为-3.63,-4.45,-3.58,-3.75,-2.18,-1.98,P值均<0.05)。 结论 幼儿动作发展水平与抑制控制、认知灵活性密切相关。应重视幼儿阶段动作学习,进一步促进身心协同发展。 Abstract:Objective To explore the neural processing differences in inhibitory control and cognitive flexibility associated with motor development levels in preschool children, so as to provide a basis for motor learning and cognitive development in preschool children. Methods From March 20 to 31 in 2023, a total of 84 preschool children aged 4-6 were recruited from two kindergartens in Xi'an City. The MOBAK-KG Motor Development Assessment Scale was used to assess the children's motor development levels. The Go/no-go task paradigm was employed to test inhibitory control ability, and the Dimensional Change Card Sort (DCCS) task paradigm was utilized to evaluate cognitive flexibility. Functional near-infrared spectroscopy (fNIRS) was used to monitor the preschool children's prefrontal cortex oxygenation dynamics during inhibitory control and cognitive flexibility tasks. Malab software and Homer 2 plugins were used to calculate prefrontal oxygenated hemoglobin concentration of preschool children during the tasks. Results The high motor skills group exhibited significantly higher task accuracy during inhibitory control and cognitive flexibility tasks [0.95(0.92, 0.97), (0.54±0.12) ] compared to the low motor skill group[0.93(0.85, 0.97), (0.45±0.13) ] (Z/t=-2.09, 3.14, P < 0.05). During the inhibitory control task, the high motor skill group [0.24(0.10, 0.41), 0.34(0.16, 0.62), 0.30(0.07, 0.52), 0.26(0.09, 0.53), 0.15(0.01, 0.43), 0.34(0.10, 0.67)mol/L ] showed significantly higher oxygenated hemoglobin concentrations in the left and right dorsolateral prefrontal cortices (L-DLPFC, R-DLPFC), left and right pars triangular Broca's areas (L-PTBA, R-PTBA), and left and right frontopolar areas (L-FPA, R-FPA) compared to the low motor skill group [0.04(-0.13, 0.15), 0.00(-0.12, 0.11), -0.01(-0.17, 0.14), 0.04(-0.14, 0.16), -0.01(-0.16, 0.12), -0.03(-0.21, 0.15)mol/L ] (Z=-4.83, -5.57, -4.77, -4.10, -3.45, -5.74, P < 0.01). During the cognitive flexibility task, the high motor skill group[0.21(0.03, 0.36), 0.28(0.15, 0.45), 0.15(0.05, 0.30), 0.20(0.05, 0.37), 0.04(-0.17, 0.26), 0.14(-0.08, 0.40)mol/L ] exhibited significantly higher oxygenated hemoglobin concentrations in the L-DLPFC, R-DLPFC, L-PTBA, R-PTBA, L-FPA, R-FPA brain regions compared to the low motor skill group [0.02(-0.20, 0.23), 0.02(-0.12, 0.21), 0.00(-0.22, 0.16), 0.00(-0.16, 0.15), -0.05(-0.25, 0.06), 0.01(-0.23, 0.20)mol/L ] (Z=-3.63, -4.45, -3.58, -3.75, -2.18, -1.98, P < 0.05). Conclusions The motor development level in preschool children is closely related to inhibitory control and cognitive flexibility. It is crucial to emphasize motor learning in early childhood to further promote holistic development of both mind and body. -
Key words:
- Motor development /
- Executive function /
- Growth and development /
- Child, preschool
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 幼儿动作技能与抑制控制和认知灵活性测试指标的相关性(r值,n=84)
Table 1. Correlation between motor skills and test metrics of inhibitory control and cognitive flexibility among preschool children(r, n=84)
测试指标 选项 抑制控制 认知灵活性 兴趣脑区 R-DLPFC 0.69** 0.53** L-DLPFC 0.60** 0.43** R-PTBA 0.55** 0.46** L-PTBA 0.56** 0.43** R-FPA 0.66** 0.32** L-FPA 0.48** 0.24* 行为学 反应时 -0.21 -0.06 正确率 0.26* 0.35** 注:*P<0.05,**P<0.01。 表 2 不同动作技能组幼儿在不同认知任务中的行为学结果比较(x±s)
Table 2. Comparison of behavioral statistics during different cognitive tasks among preschool children of different motor skill groups(x±s)
动作技能 人数 抑制控制 认知灵活性 反应时/msa 正确率a 反应时/ms 正确率 低分组 43 825.46(748.65,902.08) 0.93(0.85,0.97) 1 417.34±227.96 0.45±0.13 高分组 41 773.64(696.77,806.64) 0.95(0.92,0.97) 1 348.19±196.72 0.54±0.12 Z/t值 -2.86 -2.09 1.49 -3.14 P值 <0.01 <0.05 0.14 <0.01 注:a数据非正态分布,用M(P25,P75)表示。 表 3 不同动作技能组别幼儿在不同认知任务期间氧合血红蛋白浓度比较[M(P25,P75),mol/L]
Table 3. Comparison of oxygenated hemoglobin concentration during different cognitive tasks among preschool children of different motor skill groups[M(P25, P75), mol/L]
认知任务期 动作技能 人数 统计值 R-DLPFC L-DLPFC R-PTBA L-PTBA R-FPA L-FPA 抑制控制 低分组 43 0.00(-0.12, 0.11) 0.04(-0.13, 0.15) 0.04(-0.14, 0.16) -0.01(-0.17, 0.14) -0.03(-0.21, 0.15) -0.01(-0.16, 0.12) 高分组 41 0.34(0.16, 0.62) 0.24(0.10, 0.41) 0.26(0.09, 0.53) 0.30(0.07, 0.52) 0.34(0.10, 0.67) 0.15(0.01, 0.43) Z值 -5.57 -4.83 -4.10 -4.77 -5.74 -3.45 P值 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 认知灵活性 低分组 43 0.02(-0.12, 0.21) 0.02(-0.20, 0.23) 0.00(-0.16, 0.15) 0.00(-0.22, 0.16) 0.01(-0.23, 0.20) -0.05(-0.25, 0.06) 高分组 41 0.28(0.15, 0.45) 0.21(0.03, 0.36) 0.20(0.05, 0.37) 0.15(0.05, 0.30) 0.14(-0.08, 0.40) 0.04(-0.17, 0.26) Z值 -4.45 -3.63 -3.75 -3.58 -1.98 -2.18 P值 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 -
[1] BARNETT L M, STODDEN D, COHEN K E, et al. Fundamental movement skills: an important focus[J]. J Teach Phys Educ, 2016, 35(3): 219-225. doi: 10.1123/jtpe.2014-0209 [2] 武志俊, 王争艳, 王强. 动作发展神经科学: 未来路径与布局[J]. 中国科学(生命科学), 2021, 51(6): 619-633. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK202106003.htmWU Z J, WANG Z Y, WANG Q. The neuroscience of motor development: the future path and layout[J]. Sci Chin (Series C), 2021, 51(6): 619-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK202106003.htm [3] 杨叶红, 王树明. 动作技能学习神经生理机制研究[J]. 武汉体育学院学报, 2018, 52(8): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-WTXB201808014.htmYANG Y H, WANG S M. Neurophysiological mechanisms of motor learning[J]. J Wuhan Inst Phys Educ, 2018, 52(8): 85-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WTXB201808014.htm [4] CHAMBON V, DOMENECH P, PACHERIE E, et al. What are they up to? The role of sensory evidence and prior knowledge in action understanding[J]. PLoS One, 2011, 6(2): e17133. doi: 10.1371/journal.pone.0017133 [5] DIAMOND A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex[J]. Child Dev, 2000, 71(1): 44-56. doi: 10.1111/1467-8624.00117 [6] LUDYGA S, PUHSE U, GERBER M, et al. Core executive functions are selectively related to different facets of motor competence in preadolescent children[J]. Eur J Sport Sci, 2019, 19(3): 375-383. doi: 10.1080/17461391.2018.1529826 [7] TIEGO J, TESTA R, BELLGROVE M A, et al. A hierarchical model of inhibitory control[J]. Front Psychol, 2018, 9: 1339. doi: 10.3389/fpsyg.2018.01339 [8] MALAMBO C, NOVA A, CLARK C, et al. Associations between fundamental movement skills, physical fitness, motor competency, physical activity, and executive functions in pre-school age children: a systematic review[J]. Children (Basel), 2022, 9(7): 1059. [9] MUSCULUS L, LAUTENBACH F, KNBEl S, et al. An assist for cognitive diagnostics in soccer: two valid tasks measuring inhibition and cognitive flexibility in a soccer-specific setting with a soccer-specific motor response[J]. Front Psychol, 2022, 13: 867849. doi: 10.3389/fpsyg.2022.867849 [10] VOEGTLE A, REICHERT C, HINRICHS H, et al. Repetitive anodal TDCS to the frontal cortex increases the P300 during working memory processing[J]. Brain Sci, 2022, 12(11): 1545. doi: 10.3390/brainsci12111545 [11] LI K, YANG J, BECKER B, et al. Functional near-infrared spectroscopy neurofeedback of dorsolateral prefrontal cortex enhances human spatial working memory[J]. Neurophotonics, 2023, 10(2): 025011. [12] HILDERLEY A J, WRIGHT F V, TAYLOR M J, et al. Functional neuroplasticity and motor skill change following gross motor interventions for children with diplegic cerebral palsy[J]. Neurorehabil Neural Repair, 2023, 37(1): 16-26. doi: 10.1177/15459683221143503 [13] TSAI C L, PAN C Y, CHERNG R J, et al. Mechanisms of deficit of visuospatial attention shift in children with developmental coordination disorder: a neurophysiological measure of the endogenous Posner paradigm[J]. Brain Cogn, 2009, 71(3): 246-258. doi: 10.1016/j.bandc.2009.08.006 [14] HAN X, ZHAO M, KONG Z, et al. Association between fundamental motor skills and executive function in preschool children: a cross-sectional study[J]. Front Psychol, 2022, 13: 978994. doi: 10.3389/fpsyg.2022.978994 [15] XIE S, GONG C, LU J, et al. Enhancing Chinese preschoolers' executive function via mindfulness training: an fNIRS study[J]. Front Behav Neurosci, 2022, 16: 961797. doi: 10.3389/fnbeh.2022.961797 [16] WANG J, SAKATA C, MORIGUCHI Y. The neurobehavioral relationship between executive function and creativity during early childhood[J]. Dev Psychobiol, 2021, 63(7): e22191. doi: 10.1002/dev.22191 [17] HERRMANN C, SEELIG H, FERRARI I, et al. Basic motor competencies of preschoolers: construct, assessment and determinants[J]. Ger J Exerc Sport Res, 2019, 49(2): 179-187. doi: 10.1007/s12662-019-00566-5 [18] LUDYGA S, MVCKE M, KAMIJO K, et al. The role of motor competences in predicting working memory maintenance and preparatory processing[J]. Child Dev, 2019, 91(3): 799-813. [19] ZHENG Q, CHI A, SHI B, et al. Differential features of early childhood motor skill development and working memory processing: evidence from fNIRS[J]. Front Behav Neurosci, 2023, 17: 1279648. doi: 10.3389/fnbeh.2023.1279648 [20] IACOBUCCI D, POSAVAC S S, KARDES F R, et al. Toward a more nuanced understanding of the statistical properties of a median split[J]. J Consum Psychol, 2015, 25(4): 652-665. doi: 10.1016/j.jcps.2014.12.002 [21] CHEN Y, YU Y, NIU R, et al. Selective effects of postural control on spatial vs. nonspatial working memory: a functional near-infrared spectral imaging study[J]. Front Hum Neurosci, 2018, 12: 243. [22] STRANGMAN G, CULVER J P, THOMPSON J H, et al. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation[J]. Neuroimage, 2002, 17(2): 719-731. doi: 10.1006/nimg.2002.1227 [23] 杨硕, 李亚梦, 付若凡, 等. 3~6岁幼儿粗大动作与执行功能发展特点及关系研究[J]. 中国体育科技, 2022, 58(3): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTY202203007.htmYANG S, LI Y M, FU R F, et al. Research on the developmental characteristics and relationship between gross movement and executive function of 3 to 6 years old children[J]. China Sport Sci Technol, 2022, 58(3): 51-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTY202203007.htm [24] PARK S Y, REINL M, SCHOTT N. Effects of acute exercise at different intensities on fine motor-cognitive dual-task performance while walking: a functional near-infrared spectroscopy study[J]. Eur J Neurosci, 2021, 54(12): 8225-8248. doi: 10.1111/ejn.15241 [25] POLSKAIA N, ST-AMANT G, FRASER S, et al. Involvement of the prefrontal cortex in motor sequence learning: a functional near-infrared spectroscopy (fNIRS) study[J]. Brain Cogn, 2023, 166: 105940. doi: 10.1016/j.bandc.2022.105940 [26] 宁科, 王庭照, 万炳军, 等. 幼儿基本动作技能对身体活动的影响机制: 感知动作能力中介效应的本土阐释[J]. 体育与科学, 2022, 43(4): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TYYK202204014.htmNING K, WANG T Z, WAN B J, et al. A study on the influence of young children's fundamental motor skills on physical activity: a local interpretation of the mediating effect of perceived motor competence[J]. Sport Sci, 2022, 43(4): 105-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYYK202204014.htm [27] ROH H T, CHO S Y, YOON H G, et al. Effect of exercise intensity on neurotrophic factors and blood-brain barrier permeability induced by oxidative-nitrosative stress in male college students[J]. Int J Sport Nutr Exerc Metab, 2017, 27(3): 239-246. doi: 10.1123/ijsnem.2016-0009 [28] ARVIDSSON D, JOHANNESSON E, ANDERSEN L B, et al. A longitudinal analysis of the relationships of physical activity and body fat with nerve growth factor and brain-derived neural factor in children[J]. J Phys Act Health, 2018, 15(8): 620-625. doi: 10.1123/jpah.2017-0483 -

计量
- 文章访问数: 368
- HTML全文浏览量: 133
- PDF下载量: 36
- 被引次数: 0