留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉络膜生理特性及其与儿童青少年近视的关联

梁刚 潘臣炜

梁刚, 潘臣炜. 脉络膜生理特性及其与儿童青少年近视的关联[J]. 中国学校卫生, 2024, 45(2): 296-299. doi: 10.16835/j.cnki.1000-9817.2024025
引用本文: 梁刚, 潘臣炜. 脉络膜生理特性及其与儿童青少年近视的关联[J]. 中国学校卫生, 2024, 45(2): 296-299. doi: 10.16835/j.cnki.1000-9817.2024025
LIANG Gang, PAN Chenwei. Physiological characteristics of the choroid and its association with myopia in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(2): 296-299. doi: 10.16835/j.cnki.1000-9817.2024025
Citation: LIANG Gang, PAN Chenwei. Physiological characteristics of the choroid and its association with myopia in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(2): 296-299. doi: 10.16835/j.cnki.1000-9817.2024025

脉络膜生理特性及其与儿童青少年近视的关联

doi: 10.16835/j.cnki.1000-9817.2024025
基金项目: 

云南省科技厅昆医联合专项重点项目 202301AY070001-017

国家自然科学基金 82160204

详细信息
    作者简介:

    梁刚(1974-),女,广西岑溪人,博士,副主任医师,主要研究方向为近视防控和矫治

    通讯作者:

    潘臣炜,E-mail: pcwonly@gmail.com

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R778.1+1  R773.4  R179

Physiological characteristics of the choroid and its association with myopia in children and adolescents

  • 摘要: 脉络膜是位于巩膜和Bruch膜之间的一个多功能动态结构,可能参与了眼球生长调节与近视发展,脉络膜厚度可能是预测儿童青少年近视发展及治疗防控效果的重要生物标志物。研究对脉络膜的生理结构、测量方法进行了综述和总结,探讨了脉络膜的影响因素,包括年龄、生理变化、屈光状态和眼轴长度、药物影响及光学环境等,指出了脉络膜厚度在儿童青少年近视研究中可能的应用。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • 脉络膜是眼内连接巩膜和视网膜上皮层的关键结构,作为一个高度血管化的多功能组织,其功能不仅仅是向视网膜提供氧气和营养物质,还包括调节眼压和温度、分泌产生多种生长因子参与调节巩膜重塑等[1-2]。自1995年一项研究报道脉络膜可能参与眼球的生长调节以来[3],人们对脉络膜及其在近视中潜在作用的研究突增。越来越多的证据表明,近视患者屈光度数越大,眼轴长度越长,脉络膜厚度越薄,反之亦然[4-6];且脉络膜的变化先于眼轴长度的变化,因此脉络膜可能是预测近视发展和治疗防控效果的生物标志物[7-10]

    由于脉络膜富含血管且血流速度极快,其厚度的变化可能是受外界作用刺激下血流灌注量发生变化而引起的[11]。考虑到血液提供氧气以及营养物质的作用,再结合缺氧与近视之间的关联[12],有研究者提出脉络膜灌注量减少导致巩膜缺血缺氧、结构重塑可能是诱发近视的机制之一[13]。然而,短期刺激引起的脉络膜变化是否会导致眼球发生长期的变化尚不清楚。本研究中,笔者将对脉络膜的生理结构、测量方法、影响因素等进行综述,并探究其与近视的关联以及在近视防治方面可能的应用,以期为后续进一步的研究提供帮助。

    脉络膜位于巩膜与Bruch膜之间,其内层借助Bruch膜与视网膜色素上皮层相连,最外层则为由疏松结缔组织构成的脉络膜上腔与巩膜相连[14-15]。脉络膜作为一种高度血管化的组织,由外向内大致分为血管直径最大的Haller层、血管直径中等的Sattler层和毛细血管层[15]。脉络膜的动脉血管起源于眼动脉的分支睫状后长动脉和睫状后短动脉,是人体内血流速度最快的组织之一,这也反映了脉络膜作为视网膜外层营养来源的重要作用[16]

    脉络膜厚度一般定义为从视网膜上皮层到巩膜与脉络膜交界处之间的厚度[17]。以黄斑中心凹为原点,一般分鼻侧、颞侧、上方和下方4个方位进行观察,其中以黄斑中心凹下脉络膜厚度(subfoveal choroidal thickness, SFCT)的研究最多。一项对中国8~11岁非高度近视儿童脉络膜厚度的研究显示,鼻侧脉络膜较薄,其他3个方位距中心凹2~3 mm处较厚,颞侧最厚[18]。人类青壮年脉络膜的平均厚度为250~350 μm[11],但不同个体之间差异较大,实际脉络膜厚度与眼轴长度(axial length, AL)、屈光度等多种因素有关。

    测量脉络膜厚度的技术主要有光学生物测量仪和光学相干断层扫描技术(optical coherence tomography, OCT)。部分研究通过光学眼球生物测量仪如Lenstar测量AL, 将AL作为脉络膜厚度变化的替代指标,主要是基于AL对脉络膜厚度的变化很敏感,与脉络膜厚度呈负相关的假设[19-20]。然而,这种方法的缺陷在于AL还可能受到其他因素变化的影响而发生变化,测量结果的可靠性相对较差。

    相较而言,近些年OCT应用较为广泛。随着增强深部成像等新技术的发展,OCT已经可以捕获高分辨率的人类脉络膜图像,从而对脉络膜厚度进行精准测量。然而,目前大多数商用仪器不提供自动分割巩膜与脉络膜界面的工具,需要专业人员对OCT图像进行手动分析。由此近几年已发展了数种自动分割脉络膜并从OCT图像中提取厚度数据的方法。其中,深度学习算法具有分析速度快、准确性高的特点,其应用极大提高了分割脉络膜的效率及准确率[21-23]。然而值得注意的是,由于脉络膜与巩膜边界的对比度通常相对较低,在受到短期刺激后脉络膜变化的幅度通常也较小,大约只有5~30 μm,因此对于自动分割的结果仍然建议进行人工检查校正[24-25]

    对脉络膜血流和灌注量进行测量评估的方法早期有吲哚菁绿血管造影术(indocyanine green angiography, ICGA),其原理是通过吲哚菁绿(ICG)染料与血清蛋白结合,利用近红外波长进行成像[26];但由于这种方法是侵入性的,具有需要静脉注射染料、成像时间较长等缺点[27]。其他包括激光多普勒测速法、激光干涉测量法等二维成像的方法[28],在检测到脉络膜血流信号的同时可能也检测到视网膜的血流,因此用这些方法测量脉络膜血流只能集中于无血管的中央凹部分[29],在临床上应用有限。相比之下,光学相干断层扫描血管造影(optical coherence tomography angiography, OCTA)则是一种无创、快速、高分辨率的成像技术。其利用移动红细胞引起的OCT信号的变化捕获视网膜和脉络膜血管的精细结构细节,可以在不使用染料的情况下对视网膜和脉络膜微血管进行三维体积评估[30]。因此,目前关于脉络膜血流灌注量的绝大多数研究都采用OCTA进行检测。

    大量研究已发现,不考虑屈光不正的影响,脉络膜厚度随着年龄的增加也会发生一定的变化[31-33]。一项前瞻性队列研究发现,在6~9岁儿童中观察到脉络膜厚度变薄[(-9±25)μm],且发生近视的儿童变薄的幅度更大[(-12±25)μm]。而在10~13岁的青少年时期,未发生近视的儿童脉络膜厚度又会大幅度增加[(9±23)μm][32]。脉络膜厚度在青少年时期达到最高峰,而成人时期随着年龄的增长逐渐变薄,有研究发现脉络膜厚度与年龄呈负相关[33]

    研究发现,人类脉络膜的厚度呈现昼夜节律性变化。Brown等[34]报道成人与儿童的脉络膜厚度在24 h内均表现出强劲的昼夜变化,振幅约为25 μm,脉络膜厚度在傍晚增厚,午夜前后达到峰值,而在早晨变薄,中午前后达到最低值[35-36]

    另外,考虑到血流速度与灌注量的影响,有研究发现眼灌注压(ocular perfusion pressure, OPP)与黄斑中心凹下脉络膜厚度呈负相关[37-38]。可能是由于相对较厚的脉络膜需要较低的OPP维持眼血流量。另外,收缩压也与脉络膜厚度呈负相关[38],其具体机制还需要进一步研究。

    大量研究结果显示,无论对成人或是儿童,近视程度越高,脉络膜厚度越薄[39-41]。在Read等[42]的研究中,非近视成人的中央凹下脉络膜厚度[(271~439)μm]大于高度近视成人的报告值[(96~245)μm],儿童亦然。这一观点在动物实验中也得到了一定的验证,研究者对3种近视豚鼠模型(自发性近视、形觉剥夺性近视和晶状体诱导性近视)进行研究发现,与非近视对照组相比,自发性近视豚鼠的脉络膜厚度和灌注量均减少,形觉剥夺性近视和负性晶状体诱导性近视也有类似发现[43]。AL则与脉络膜厚度呈负相关[44-46],Tan等[47]报道轴长每增加1 mm,脉络膜就会变薄20~60 μm。

    阿托品近年来被尝试应用于控制近视的发展,一项对受试儿童施用0.01%质量体积浓度阿托品滴眼液的研究发现,在使用8周后儿童的脉络膜增厚,不同方位脉络膜厚度变化的幅度不同,中心凹下脉络膜厚度增幅最大[48]。然而,Ye等[49]的研究却发现在使用0.01%质量体积浓度阿托品6个月后观察到脉络膜变薄;与之相反,使用1%质量体积浓度的阿托品则可以使脉络膜厚度增加。由此看来,阿托品的浓度以及施用时间似乎影响着最终效应的方向,关于阿托品影响脉络膜厚度以及控制近视的机制仍需要进一步研究。

    Ogawa等[50]的研究发现,儿童在加强户外活动1周后观察到其脉络膜厚度增加,与以往增强户外活动、增加暴露于户外光线的时间有益于儿童青少年近视防控[51-52]的研究结果相一致。而人为增加光照暴露似乎也能起到同样的效果,有研究显示,在使用低强度激光治疗后可以观察到脉络膜厚度显著增加[53]。此外,通过使用角膜塑形镜也可以达到使脉络膜增厚的效果[53]。值得注意的是,光照的强度、时间、波长都可能会影响最终脉络膜厚度的变化效果[54-55]

    由于近视屈光度与脉络膜厚度的负相关关系,已有报道提出或许可以通过观察脉络膜厚度的变化判断某种刺激是导致近视还是预防近视,然而这一推论仍有待证实[11]。另外,有研究在使用角膜塑形镜进行治疗时,发现戴镜1个月后脉络膜厚度的变化与12个月后观察到的轴伸长程度相关[56],表明脉络膜的变化先于AL变化,结合脉络膜厚度与屈光状态的关系,脉络膜厚度可能是预测未来近视发展、眼轴伸长重要的生物标志物,同时也能够反映某种临床治疗近视方案的效果。已有报道显示,在近些年的近视临床试验中越来越多地采用了后节段的OCT成像[57],并将脉络膜厚度作为一项结果测量指标,可能将在未来成为近视患者的治疗标准之一。针对脉络膜变化的影响因素,还可以加以探索更多近视防控有效的干预措施,比如环境控制(增加户外活动的时间和适当条件的光暴露[52])以及药物手段进行干预(如阿托品[49])。

    尽管已有大量研究支持脉络膜厚度这一指标对儿童青少年近视防控有着重要的作用,但仍有一些问题有待解决:首先,在上述研究中观察到的近视屈光度以及AL与脉络膜厚度之间的负向关联是否存在因果关系,还需要大量前瞻性的人群研究加以证实。其次,脉络膜在眼球生长调节中发生作用的具体机制也尚不清楚。再者,针对短期刺激下脉络膜厚度极微小的变化,其测量仍然具有一定的挑战性。由于目前尚无标准化的成像方案,且在测量过程中脉络膜的厚度还可能会受到多种因素的影响,导致不同研究间难以比较,数据的分析解释具有难度。因此,在未来需要研究者设计出科学合理的研究方案,并做到达成统一、公开透明,注意控制混杂因素的影响。

    综上所述,脉络膜作为连接巩膜和视网膜的关键部位,其厚度很可能是预测儿童青少年近视发展以及治疗效果的重要生物标志物。由于脉络膜受到生理因素、药物干预、光学环境等多方面的影响,未来有必要采用更科学标准的研究设计及更精确的测量方法对脉络膜在人类、尤其是处于发育中的儿童少年近视发展与治疗防控过程中可能扮演的角色进行进一步的深入研究。

  • [1] NICKLA D L, WALLMAN J. The multifunctional choroid[J]. Prog Retin Eye Res, 2010, 29(2): 144-168. doi: 10.1016/j.preteyeres.2009.12.002
    [2] TROILO D, SMITH E L, NICKLA D L, et al. IMI-report on experimental models of emmetropization and myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M31-M88. doi: 10.1167/iovs.18-25967
    [3] WALLMAN J, WILDSOET C, XU A, et al. Moving the retina: choroidal modulation of refractive state[J]. Vision Res, 1995, 35(1): 37-50. doi: 10.1016/0042-6989(94)E0049-Q
    [4] JIN P, ZOU H, ZHU J, et al. Choroidal and retinal thickness in children with different refractive status measured by swept-source optical coherence tomography[J]. Am J Ophthalmol, 2016, 168: 164-176. doi: 10.1016/j.ajo.2016.05.008
    [5] JIN P, ZOU H, XU X, et al. Longitudinal changes in choroidal and retinal thicknesses in children with myopic shift[J]. Retina, 2019, 39(6): 1091-1099. doi: 10.1097/IAE.0000000000002090
    [6] MORIYAMA M, OHNO-MATSUI K, FUTAGAMI S, et al. Morphology and long-term changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma[J]. Ophthalmology, 2007, 114(9): 1755-1762. doi: 10.1016/j.ophtha.2006.11.034
    [7] READ S A, ALONSO-CANEIRO D, VINCENT S J, et al. Longitudinal changes in choroidal thickness and eye growth in childhood[J]. Invest Ophthalmol Vis Sci, 2015, 56(5): 3103-3112. doi: 10.1167/iovs.15-16446
    [8] NISHIDA Y, FUJIWARA T, IMAMURA Y, et al. Choroidal thickness and visual acuity in highly myopic eyes[J]. Retina, 2012, 32(7): 1229-1236. doi: 10.1097/IAE.0b013e318242b990
    [9] WANG N K, LAI C C, CHOU C L, et al. Choroidal thickness and biometric markers for the screening of lacquer cracks in patients with high myopia[J]. PLoS One, 2013, 8(1): e53660. doi: 10.1371/journal.pone.0053660
    [10] ULAGANATHAN S, READ S A, COLLINS M J, et al. Daily axial length and choroidal thickness variations in young adults: associations with light exposure and longitudinal axial length and choroid changes[J]. Exp Eye Res, 2019, 189: 107850. doi: 10.1016/j.exer.2019.107850
    [11] OSTRIN L A, HARB E, NICKLA D L, et al. IMI-the dynamic choroid: new insights, challenges, and potential significance for human myopia[J]. Invest Ophthalmol Vis Sci, 2023, 64(6): 4. doi: 10.1167/iovs.64.6.4
    [12] WU H, CHEN W, ZHAO F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci USA, 2018, 115(30): E7091-E7100.
    [13] LIU Y, WANG L, XU Y, et al. The influence of the choroid on the onset and development of myopia: from perspectives of choroidal thickness and blood flow[J]. Acta Ophthalmol, 2021, 99(7): 730-738. doi: 10.1111/aos.14773
    [14] PLATZL C, KASER-EICHBERGER A, BENAVENTE-PEREZ A, et al. The choroid-sclera interface: an ultrastructural study[J]. Heliyon, 2022, 8(5): e09408. doi: 10.1016/j.heliyon.2022.e09408
    [15] FIELDS M A, DEL PRIORE L V, ADELMAN R A, et al. Interactions of the choroid, Bruch's membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier[J]. Prog Retin Eye Res, 2020, 76: 100803. doi: 10.1016/j.preteyeres.2019.100803
    [16] ALM A, BILL A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues[J]. Exp Eye Res, 1973, 15(1): 15-29. doi: 10.1016/0014-4835(73)90185-1
    [17] FUJIWARA A, SHIRAGAMI C, SHIRAKATA Y, et al. Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes[J]. Jpn J Ophthalmol, 2012, 56(3): 230-235. doi: 10.1007/s10384-012-0128-5
    [18] QI Y, LI L, ZHANG F. Choroidal thickness in Chinese children aged 8 to 11 years with mild and moderate myopia[J]. J Ophthalmol, 2018, 2018: 7270127.
    [19] DELSHAD S, COLLINS M J, READ S A, et al. The time course of the onset and recovery of axial length changes in response to imposed defocus[J]. Sci Rep, 2020, 10(1): 8322. doi: 10.1038/s41598-020-65151-5
    [20] SWIATCZAK B, SCHAEFFEL F. Emmetropic, but not myopic human eyes distinguish positive defocus from calculated blur[J]. Invest Ophthalmol Vis Sci, 2021, 62(3): 14. doi: 10.1167/iovs.62.3.14
    [21] KUGELMAN J, ALONSO-CANEIRO D, READ S A, et al. Automatic choroidal segmentation in OCT images using supervised deep learning methods[J]. Sci Rep, 2019, 9(1): 13298. doi: 10.1038/s41598-019-49816-4
    [22] ZHANG H, YANG J, ZHOU K, et al. Automatic segmentation and visualization of choroid in OCT with knowledge infused deep learning[J]. IEEE J Biomed Health Inform, 2020, 24(12): 3408-3420. doi: 10.1109/JBHI.2020.3023144
    [23] 周愉, 张敏, 朱瑜洁, 等. 深度学习在脉络膜分割中的应用研究进展[J]. 国际眼科杂志, 2023, 23(6): 1007-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK202306025.htm

    ZHOU Y, ZHANG M, ZHU Y J, et al. Research progress on the application of deep learning in choroidal segmentation[J]. Int Eye Sci, 2023, 23(6): 1007-1011. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK202306025.htm
    [24] CHAKRABORTY R, READ S A, COLLINS M J. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes[J]. Exp Eye Res, 2012, 103: 47-54. doi: 10.1016/j.exer.2012.08.002
    [25] HOSEINI-YAZDI H, VINCENT S J, COLLINS M J, et al. Regional alterations in human choroidal thickness in response to short-term monocular hemifield myopic defocus[J]. Ophthalmic Physiol Opt, 2019, 39(3): 172-182. doi: 10.1111/opo.12609
    [26] LIM J I, FLOWER R W. Indocyanine green angiography[J]. Int Ophthalmol Clin, 1995, 35(4): 59-70.
    [27] SPAIDE R F, KLANCNIK J M, COONEY M J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50. doi: 10.1001/jamaophthalmol.2014.3616
    [28] WEI X, BALNE P K, MEISSNER K E, et al. Assessment of flow dynamics in retinal and choroidal microcirculation[J]. Surv Ophthalmol, 2018, 63(5): 646-664. doi: 10.1016/j.survophthal.2018.03.003
    [29] IWASE T, YAMAMOTO K, RA E, et al. Diurnal variations in blood flow at optic nerve head and choroid in healthy eyes: diurnal variations in blood flow[J]. Medicine (Baltimore), 2015, 94(6): e519. doi: 10.1097/MD.0000000000000519
    [30] DE CARLO T E, ROMANO A, WAHEED N K, et al. A review of optical coherence tomography angiography (OCTA)[J]. Int J Retina Vitreous, 2015, 1: 5. doi: 10.1186/s40942-015-0005-8
    [31] PONGSACHAREONNONT P, SOMKIJRUNGROJ T, ASSAVAPON-GPAIBOON B, et al. Foveal and parafoveal choroidal thickness pattern measuring by swept source optical coherence tomography[J]. Eye (Lond), 2019, 33(9): 1443-1451. doi: 10.1038/s41433-019-0404-4
    [32] XIONG S, HE X, ZHANG B, et al. Changes in choroidal thickness varied by age and refraction in children and adolescents: a 1-year longitudinal study[J]. Am J Ophthalmol, 2020, 213: 46-56. doi: 10.1016/j.ajo.2020.01.003
    [33] LIN C Y, HUANG Y L, HSIA W P, et al. Correlation of choroidal thickness with age in healthy subjects: automatic detection and segmentation using a deep learning model[J]. Int Ophthalmol, 2022, 42(10): 3061-3070. doi: 10.1007/s10792-022-02292-8
    [34] BROWN J S, FLITCROFT D I, YING G S, et al. In vivo human choroidal thickness measurements: evidence for diurnal fluctuations[J]. Invest Ophthalmol Vis Sci, 2009, 50(1): 5-12. doi: 10.1167/iovs.08-1779
    [35] SAYIN N, KARA N, PEKEL G, et al. Choroidal thickness changes after dynamic exercise as measured by spectral-domain optical coherence tomography[J]. Ind J Ophthalmol, 2015, 63(5): 445-450. doi: 10.4103/0301-4738.159884
    [36] OSTRIN L A, JNAWALI A, CARKEET A, et al. Twenty-four hour ocular and systemic diurnal rhythms in children[J]. Ophthalmic Physiol Opt, 2019, 39(5): 358-369. doi: 10.1111/opo.12633
    [37] KIM M, KIM S S, KWON H J, et al. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study[J]. Invest Ophthalmol Vis Sci, 2012, 53(12): 7710-7717. doi: 10.1167/iovs.12-10464
    [38] SANSOM L T, SUTER C A, MCKIBBIN M. The association between systolic blood pressure, ocular perfusion pressure and subfoveal choroidal thickness in normal individuals[J]. Acta Ophthalmol, 2016, 94(2): e157-e158.
    [39] READ S A, FUSS J A, VINCENT S J, et al. Choroidal changes in human myopia: insights from optical coherence tomography imaging[J]. Clin Exp Optom, 2019, 102(3): 270-285. doi: 10.1111/cxo.12862
    [40] JONAS J B, WANG Y X, DONG L, et al. Advances in myopia research anatomical findings in highly myopic eyes[J]. Eye Vis (Lond), 2020, 7: 45. doi: 10.1186/s40662-020-00210-6
    [41] PROUSALI E, DASTIRIDOU A, ZIAKAS N, et al. Choroidal thickness and ocular growth in childhood[J]. Surv Ophthalmol, 2021, 66(2): 261-275. doi: 10.1016/j.survophthal.2020.06.008
    [42] READ S A, COLLINS M J, VINCENT S J, et al. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7578-7586. doi: 10.1167/iovs.13-12772
    [43] ZHANG S, ZHANG G, ZHOU X, et al. Changes in choroidal thickness and choroidal blood perfusion in Guinea Pig Myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083. doi: 10.1167/iovs.18-26397
    [44] AGAWA T, MIURA M, IKUNO Y, et al. Choroidal thickness measurement in healthy Japanese subjects by three-dimensional high-penetration optical coherence tomography[J]. Graefes Arch Clin Exp Ophthalmol, 2011, 249(10): 1485-1492. doi: 10.1007/s00417-011-1708-7
    [45] HARB E, HYMAN L, GWIAZDA J, et al. Choroidal thickness profiles in myopic eyes of young adults in the correction of myopia evaluation trial cohort[J]. Am J Ophthalmol, 2015, 160(1): 62-71. doi: 10.1016/j.ajo.2015.04.018
    [46] LI X Q, JEPPESEN P, LARSEN M, et al. Subfoveal choroidal thickness in 1323 children aged 11 to 12 years and association with puberty: the Copenhagen child cohort 2000 eye study[J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 550-555. doi: 10.1167/iovs.13-13476
    [47] TAN C S, CHEONG K X, LIM L W, et al. Topographic variation of choroidal and retinal thicknesses at the macula in healthy adults[J]. Br J Ophthalmol, 2014, 98(3): 339-344. doi: 10.1136/bjophthalmol-2013-304000
    [48] LI W, JIANG R, ZHU Y, et al. Effect of 0.01% atropine eye drops on choroidal thickness in myopic children[J]. J Fr Ophtalmol, 2020, 43(9): 862-868. doi: 10.1016/j.jfo.2020.04.023
    [49] YE L, SHI Y, YIN Y, et al. Effects of atropine treatment on choroidal thickness in myopic children[J]. Invest Ophthalmol Vis Sci, 2020, 61(14): 15. doi: 10.1167/iovs.61.14.15
    [50] OGAWA M, TORⅡ H, YOTSUKURA E, et al. Intensive outdoor activity for 1 week increased choroidal thickness[J]. Invest Ophthalmol Vis Sci, 2022, 63(7): 246-A0100.
    [51] 翟露露, 伍晓艳, 许韶君, 等. 接触阳光与儿童近视关联的研究进展[J]. 中华流行病学杂志, 2016, 37(11): 1555-1560. doi: 10.3760/cma.j.issn.0254-6450.2016.11.023

    ZHAI L L, WU X Y, XU S J, et al. Progress in research of association between myopia and sunlight exposure in children[J]. Chin J Epidemiol, 2016, 37(11): 1555-1560. (in Chinese) doi: 10.3760/cma.j.issn.0254-6450.2016.11.023
    [52] WU P C, CHEN C T, LIN K K, et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial[J]. Ophthalmology, 2018, 125(8): 1239-1250. doi: 10.1016/j.ophtha.2017.12.011
    [53] XIONG F, MAO T, LIAO H, et al. Orthokeratology and low-intensity laser therapy for slowing the progression of myopia in children[J]. Biomed Res Int, 2021, 2021: 8915867.
    [54] LAN W, FELDKAEMPER M, SCHAEFFEL F. Bright light induces choroidal thickening in chickens[J]. Optom Vis Sci, 2013, 90(11): 1199-1206. doi: 10.1097/OPX.0000000000000074
    [55] LOU L, OSTRIN L A. Effects of narrowband light on choroidal thickness and the pupil[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 40. doi: 10.1167/iovs.61.10.40
    [56] LI Z, HU Y, CUI D, et al. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length[J]. Acta Ophthalmol, 2019, 97(3): e454-e459.
    [57] WOLFFSOHN J S, KOLLBAUM P S, BERNTSEN D A, et al. IMI-clinical myopia control trials and instrumentation report[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M132-M160.
  • 期刊类型引用(1)

    1. 王智勇,许军,蒋隽舒,郭力鹏,张立军,张玫,孟军,何作力,张富勇,孙克,李瑞,刘阳,周德壮. 儿童青少年近视防控标本兼治体系的优化改进. 中国学校卫生. 2024(12): 1677-1680 . 本站查看

    其他类型引用(1)

  • 加载中
计量
  • 文章访问数:  253
  • HTML全文浏览量:  184
  • PDF下载量:  47
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-10-04
  • 修回日期:  2023-11-20
  • 网络出版日期:  2024-03-02
  • 刊出日期:  2024-02-25

目录

/

返回文章
返回