留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多基因风险评分在儿童青少年近视早期预测研究中的应用

高振珊 陶芳标

高振珊, 陶芳标. 多基因风险评分在儿童青少年近视早期预测研究中的应用[J]. 中国学校卫生, 2024, 45(1): 148-152. doi: 10.16835/j.cnki.1000-9817.2024012
引用本文: 高振珊, 陶芳标. 多基因风险评分在儿童青少年近视早期预测研究中的应用[J]. 中国学校卫生, 2024, 45(1): 148-152. doi: 10.16835/j.cnki.1000-9817.2024012
GAO Zhenshan, TAO Fangbiao. Application of a polygenic risk score in the early prediction of myopia in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(1): 148-152. doi: 10.16835/j.cnki.1000-9817.2024012
Citation: GAO Zhenshan, TAO Fangbiao. Application of a polygenic risk score in the early prediction of myopia in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2024, 45(1): 148-152. doi: 10.16835/j.cnki.1000-9817.2024012

多基因风险评分在儿童青少年近视早期预测研究中的应用

doi: 10.16835/j.cnki.1000-9817.2024012
基金项目: 

国家重点研发计划 2021YFC2702100

国家重点研发计划 2021YFC2702105

详细信息
    作者简介:

    高振珊(1999-), 男, 山东菏泽人, 在读硕士, 主要研究方向为儿童青少年健康

    通讯作者:

    陶芳标, E-mail: fbtao@ahmu.edu.cn

  • 中图分类号: R778.1+1 R596.3

Application of a polygenic risk score in the early prediction of myopia in children and adolescents

  • 摘要: 近视已成为全球关注的重大公共卫生问题, 科学有效的近视预测模型有助于识别近视高风险人群, 从而达到精准预防的目的。随着全基因组关联研究的快速发展和大规模前瞻性人群队列的建立, 多基因风险评分模型(polygenic risk score, PRS)已用于近视表型的预测, 并将近视预测窗口提前, 从而对近视高风险人群进行早期筛查和干预。研究阐述了近年来近视基因的识别和验证、PRS模型在国内外近视预防研究中的实践及效能评价, 揭示其在近视预测研究中的应用价值, 强调PRS预测模型与户外活动、近距离用眼等预防措施相结合的重要意义, 以促进儿童青少年近视的精准预防。
  • [1] BAIRD P N, SAW S M, LANCA C, et al. Myopia[J]. Nat Rev Dis Prim, 2020, 6(1): 99. doi: 10.1038/s41572-020-00231-4
    [2] HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi: 10.1016/j.ophtha.2016.01.006
    [3] 陶芳标, 潘臣炜, 伍晓艳, 等. 户外活动防控儿童青少年近视专家推荐[J]. 中国学校卫生, 2019, 40(5): 641-643. doi: 10.16835/j.cnki.1000-9817.2019.05.001

    TAO F B, PAN C W, WU X Y, et al. Expert recommendation for outdoors activities as myopia prevention and control in children and adolescents[J]. Chin J Sch Health, 2019, 40(5): 641-643. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2019.05.001
    [4] 中华人民共和国国家卫生健康委宣传司. 国家卫生健康委员会2021年7月13日新闻发布会文字实录(有关2020年全国儿童青少年近视)[EB/OL]. (2021-07-13)[2023-10-19]. http://www.nhc.gov.cn/xcs/s3574/202107/2fef24a3b77246fc9fb36dc8943af700.shtml.

    Department of Publicity, National Health Commission of the PRC. Transcript of the press conference of the National Health Commission on 13 July 2021(on myopia among children and adolescents in China in 2020)[EB/OL]. (2021-07-13)[2023-10-19]. http://www.nhc.gov.cn/xcs/s3574/202107/2fef24a3b77246fc9fb36dc8943af700.shtml. (in Chinese)
    [5] 中国学生营养与健康促进会视力健康分会, 中华预防医学会公共卫生眼科分会. 中国儿童青少年近视防控公共卫生综合干预行动专家共识[J]. 中华医学杂志, 2023, 103(38): 3002-3009.

    Chinese Students' Nutrition and Health Promotion Association Visual Health Branch, Chinese Preventive Medicine Association Public Health Ophthalmology Branch. Chinese expert consensus on comprehensive public health intervention for myopia prevention and control in children and adolescents[J]. Natl Med J China, 2023, 103(38): 3002-3009. (in Chinese)
    [6] HAN X, LIU C, CHEN Y, et al. Myopia prediction: a systematic review[J]. Eye (Lond), 2022, 36(5): 921-929. doi: 10.1038/s41433-021-01805-6
    [7] POZARICKIJ A, WILLIAMS C, HYSI P G, et al. Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development[J]. Commun Biol, 2019, 2: 167. doi: 10.1038/s42003-019-0387-5
    [8] PAGET S, JULIA S, VITEZICA Z G, et al. Linkage analysis of high myopia susceptibility locus in 26 families[J]. Mol Vis, 2008, 14: 2566-2574.
    [9] NAKANISHI H, YAMADA R, GOTOH N, et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1[J]. PLoS Genet, 2009, 5(9): e1000660. doi: 10.1371/journal.pgen.1000660
    [10] SOLOUKI A M, VERHOEVEN V J, VAN DUIJN C M, et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14[J]. Nat Genet, 2010, 42(10): 897-901. doi: 10.1038/ng.663
    [11] HYSI P G, YOUNG T L, MACKEY D A, et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25[J]. Nat Genet, 2010, 42(10): 902-905. doi: 10.1038/ng.664
    [12] KANTOR O, BENKO Z, ENZSOLY A, et al. Characterization of connexin36 gap junctions in the human outer retina[J]. Brain Struct Funct, 2016, 221(6): 2963-2984. doi: 10.1007/s00429-015-1082-z
    [13] GONG Q, JANOWSKI M, XIE M, et al. RASGRF1 mRNA expression in myopic eyes of guinea pigs[J]. Clin Exp Optom, 2017, 100(2): 174-178. doi: 10.1111/cxo.12476
    [14] LI Y J, GOH L, KHOR C C, et al. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese[J]. Ophthalmology, 2011, 118(2): 368-375. doi: 10.1016/j.ophtha.2010.06.016
    [15] SHI Y, QU J, ZHANG D, et al. Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population[J]. Am J Hum Genet, 2011, 88(6): 805-813. doi: 10.1016/j.ajhg.2011.04.022
    [16] DUPARC R, BOUTEMMINE D, CHAMPAGNE M, et al. PAX6 is required for delta-catenin/neurojugin expression during retinal, cerebellar and cortical development in mice[J]. Dev Biol, 2006, 300(2): 647-655. doi: 10.1016/j.ydbio.2006.07.045
    [17] PAFFENHOLZ R, KUHN C, GRUND C, et al. The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction[J]. Exp Cell Res, 1999, 250(2): 452-464. doi: 10.1006/excr.1999.4534
    [18] FAN Q, BARATHI V A, CHENG C Y, et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia[J]. PLoS Genet, 2012, 8(6): e1002753. doi: 10.1371/journal.pgen.1002753
    [19] CHENG C Y, SCHACHE M, IKRAM M K, et al. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error[J]. Am J Hum Genet, 2013, 93(2): 264-277. doi: 10.1016/j.ajhg.2013.06.016
    [20] VERHOEVEN V J, HYSI P G, WOJCIECHOWSKI R, et al. Genome-wide Meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia[J]. Nat Genet, 2013, 45(3): 314-318. doi: 10.1038/ng.2554
    [21] KIEFER A K, TUNG J Y, DO C B, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia[J]. PLoS Genet, 2013, 9(2): e1003299. doi: 10.1371/journal.pgen.1003299
    [22] KEMPEN J H, MITCHELL P, LEE K E, et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia[J]. Arch Ophthalmol, 2004, 122(4): 495-505. doi: 10.1001/archopht.122.4.495
    [23] TEDJA M S, WOJCIECHOWSKI R, HYSI P G, et al. Genome-wide association Meta-analysis highlights light-induced signaling as a driver for refractive error[J]. Nat Genet, 2018, 50(6): 834-848. doi: 10.1038/s41588-018-0127-7
    [24] HYSI P G, CHOQUET H, KHAWAJA A P, et al. Meta-analysis of 542934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia[J]. Nat Genet, 2020, 52(4): 401-407. doi: 10.1038/s41588-020-0599-0
    [25] FAN Q, POZARICKIJ A, TAN N Y Q, et al. Genome-wide association Meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error[J]. Commun Biol, 2020, 3(1): 133. doi: 10.1038/s42003-020-0802-y
    [26] LIU J, ZHANG R, SUN L, et al. Genotype-phenotype correlation and interaction of 4q25, 15q14 and MIPEP variants with myopia in southern Chinese population[J]. Br J Ophthalmol, 2021, 105(6): 869-877. doi: 10.1136/bjophthalmol-2019-314782
    [27] LI F F, LU S Y, TANG S M, et al. Genetic associations of myopia severities and endophenotypes in children[J]. Br J Ophthalmol, 2021, 105(8): 1178-1183. doi: 10.1136/bjophthalmol-2020-316728
    [28] TANG S M, LI F F, LU S Y, et al. Association of the ZC3H11B, ZFHX1B and SNTB1 genes with myopia of different severities[J]. Br J Ophthalmol, 2020, 104(10): 1472-1476. doi: 10.1136/bjophthalmol-2019-314203
    [29] YUAN X L, ZHANG R, ZHENG Y, et al. Corneal curvature-associated MTOR variant differentiates mild myopia from high myopia in Han Chinese population[J]. Ophthalmic Genet, 2021, 42(4): 446-457. doi: 10.1080/13816810.2021.1923035
    [30] LI X, LONG J, LIU Y, et al. Association of MTOR and PDGFRA gene polymorphisms with different degrees of myopia severity[J]. Exp Eye Res, 2022, 217: 108962. doi: 10.1016/j.exer.2022.108962
    [31] MIYAKE M, YAMASHIRO K, TABARA Y, et al. Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia[J]. Nat Commun, 2015, 6: 6689. doi: 10.1038/ncomms7689
    [32] LU S Y, TANG S M, LI F F, et al. Association of WNT7B and RSPO1 with axial length in school children[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 11. doi: 10.1167/iovs.61.10.11
    [33] HAMMOND C J, ANDREW T, MAK Y T, et al. A susceptibility locus for myopia in the normal population is linked to the PAX66 gene region on chromosome 11: a genomewide scan of dizygotic twins[J]. Am J Hum Genet, 2004, 75(2): 294-304. doi: 10.1086/423148
    [34] HAN W, LEUNG K H, FUNG W Y, et al. Association of PAX6 polymorphisms with high myopia in Han Chinese nuclear families[J]. Invest Ophthalmol Vis Sci, 2009, 50(1): 47-56. doi: 10.1167/iovs.07-0813
    [35] LIANG C L, HSI E, CHEN K C, et al. A functional polymorphism at 3'UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3500-3505. doi: 10.1167/iovs.10-5859
    [36] JIANG B, YAP M K, LEUNG K H, et al. PAX6 haplotypes are associated with high myopia in Han Chinese[J]. PLoS One, 2011, 6(5): e19587. doi: 10.1371/journal.pone.0019587
    [37] TANG S M, RONG S S, YOUNG A L, et al. PAX6 gene associated with high myopia: a Meta-analysis[J]. Optom Vis Sci, 2014, 91(4): 419-429. doi: 10.1097/OPX.0000000000000224
    [38] MUTTI D O, COOPER M E, O'BRIEN S, et al. Candidate gene and locus analysis of myopia[J]. Mol Vis, 2007, 13: 1012-1019.
    [39] SHI Y, GONG B, CHEN L, et al. A genome-wide Meta-analysis identifies two novel loci associated with high myopia in the Han Chinese population[J]. Hum Mol Genet, 2013, 22(11): 2325-2333. doi: 10.1093/hmg/ddt066
    [40] KHOR C C, MIYAKE M, CHEN L J, et al. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia[J]. Hum Mol Genet, 2013, 22(25): 5288-5294. doi: 10.1093/hmg/ddt385
    [41] LI J, JIAO X, ZHANG Q, et al. Association and interaction of myopia with SNP markers rs13382811 and rs6469937 at ZFHX1B and SNTB1 in Han Chinese and European populations[J]. Mol Vis, 2017, 23: 588-604.
    [42] ZHAO F, LI Q, CHEN W, et al. Dysfunction of VIPR2 leads to myopia in humans and mice[J]. Med Genet, 2022, 59(1): 88-100. doi: 10.1136/jmedgenet-2020-107220
    [43] YU Z, ZHOU J, CHEN X, et al. Polymorphisms in the CTNND2 gene and 11q24.1 genomic region are associated with pathological myopia in a Chinese population[J]. Ophthalmologica, 2012, 228(2): 123-129. doi: 10.1159/000338188
    [44] LI Y J, GOH L, KHOR C C, et al. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese[J]. Ophthalmology, 2011, 118(2): 368-375. doi: 10.1016/j.ophtha.2010.06.016
    [45] LU B, JIANG D, WANG P, et al. Replication study supports CTNND2 as a susceptibility gene for high myopia[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 8258-8261. doi: 10.1167/iovs.11-7914
    [46] HOSODA Y, YOSHIKAWA M, MIYAKE M, et al. CCDC102B confers risk of low vision and blindness in high myopia[J]. Nat Commun, 2018, 9(1): 1782. doi: 10.1038/s41467-018-03649-3
    [47] BILBAO-MALAVÉ V, RECALDE S, BEZUNARTEA J, et al. Genetic and environmental factors related to the development of myopic maculopathy in Spanish patients[J]. PLoS One, 2020, 15(7): e0236071. doi: 10.1371/journal.pone.0236071
    [48] CHATTERJEE N, SHI J, GARCÍA-CLOSAS M. Developing and evaluating polygenic risk prediction models for stratified disease prevention[J]. Nat Rev Genet, 2016, 17(7): 392-406. doi: 10.1038/nrg.2016.27
    [49] WAND H, LAMBERT S A, TAMBURRO C, et al. Improving reporting standards for polygenic scores in risk prediction studies[J]. Nature, 2021, 591(7849): 211-219. doi: 10.1038/s41586-021-03243-6
    [50] CHEN L J, LI F F, LU S Y, et al. Association of polymorphisms in ZFHX1B, KCNQ5 and GJD2 with myopia progression and polygenic risk prediction in children[J]. Br J Ophthalmol, 2021, 105(12): 1751-1757. doi: 10.1136/bjophthalmol-2020-318708
    [51] GHORBANI MOJARRAD N, PLOTNIKOV D, WILLIAMS C, et al. Association between polygenic risk score and risk of myopia[J]. JAMA Ophthalmol, 2020, 138(1): 7-13. doi: 10.1001/jamaophthalmol.2019.4421
    [52] ENTHOVEN C A, TIDEMAN J W L, POLLING J R, et al. Interaction between lifestyle and genetic susceptibility in myopia: the generation R study[J]. Eur J Epidemiol, 2019, 34(8): 777-784. doi: 10.1007/s10654-019-00512-7
    [53] LANCA C, KASSAM I, PATASOVA K, et al. New Polygenic risk score to predict high myopia in singapore Chinese children[J]. Transl Vis Sci Technol, 2021, 10(8): 26. doi: 10.1167/tvst.10.8.26
    [54] GHORBANI MOJARRAD N, WILLIAMS C, GUGGENHEIM J A. A genetic risk score and number of myopic parents independently predict myopia[J]. Ophthalmic Physiol Opt, 2018, 38(5): 492-502. doi: 10.1111/opo.12579
    [55] ZADNIK K, SINNOTT L T, COTTER S A, et al. Prediction of juvenile-onset myopia[J]. JAMA Ophthalmol, 2015, 133(6): 683-689. doi: 10.1001/jamaophthalmol.2015.0471
    [56] CHEN Y, HAN X, GUO X, et al. Contribution of genome-wide significant single nucleotide polymorphisms in myopia prediction: findings from a 10-year cohort of Chinese twin children[J]. Ophthalmology, 2019, 126(12): 1607-1614. doi: 10.1016/j.ophtha.2019.06.026
    [57] Polygenic Risk Score Task Force of the International Common Disease Alliance. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps[J]. Nat Med, 2021, 27(11): 1876-1884. doi: 10.1038/s41591-021-01549-6
  • 加载中
计量
  • 文章访问数:  159
  • HTML全文浏览量:  75
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 修回日期:  2023-11-03
  • 网络出版日期:  2024-02-01
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回