留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微小RNA-142-3p减轻尘螨致敏儿童气道炎症的机制研究

吴风 宋婷婷 臧潇 洪善超 汪伟

吴风, 宋婷婷, 臧潇, 洪善超, 汪伟. 微小RNA-142-3p减轻尘螨致敏儿童气道炎症的机制研究[J]. 中国学校卫生, 2023, 44(12): 1883-1888. doi: 10.16835/j.cnki.1000-9817.2023.12.026
引用本文: 吴风, 宋婷婷, 臧潇, 洪善超, 汪伟. 微小RNA-142-3p减轻尘螨致敏儿童气道炎症的机制研究[J]. 中国学校卫生, 2023, 44(12): 1883-1888. doi: 10.16835/j.cnki.1000-9817.2023.12.026
WU Feng, SONG Tingting, ZANG Xiao, HONG Shanchao, WANG Wei. miR-142-3p alleviates house dust mite-induced airway inflammation among children[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2023, 44(12): 1883-1888. doi: 10.16835/j.cnki.1000-9817.2023.12.026
Citation: WU Feng, SONG Tingting, ZANG Xiao, HONG Shanchao, WANG Wei. miR-142-3p alleviates house dust mite-induced airway inflammation among children[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2023, 44(12): 1883-1888. doi: 10.16835/j.cnki.1000-9817.2023.12.026

微小RNA-142-3p减轻尘螨致敏儿童气道炎症的机制研究

doi: 10.16835/j.cnki.1000-9817.2023.12.026
基金项目: 

国家自然科学基金项目 81802038

详细信息
    作者简介:

    吴风(1982-),女,江苏镇江人,大学本科,副主任技师,主要研究方向为病原生物感染

    通讯作者:

    洪善超,E-mail: hongshanchao1@163.com

    汪伟,E-mail: wangwei@jipd.com

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: Q344+.14  R562.2+5  R179

miR-142-3p alleviates house dust mite-induced airway inflammation among children

  • 摘要:   目的  探索miR-142-3p在减轻尘螨诱导的儿童过敏性气道炎症中的作用,为解析儿童过敏性气道炎症发病机制提供新思路。  方法  于2022年9—11月在江南大学附属中心医院收集15例尘螨过敏哮喘患儿和15例健康儿童血清,采用荧光定量聚合酶联反应(PCR)法检测血清中miR-142-3p表达水平。采用酶联免疫吸附试验(ELISA)法检测细胞培养上清液中炎症因子白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)表达水平,采用荧光定量PCR法和Western blotting法检测高迁移率族蛋白B1(HMGB1)基因和蛋白表达水平。应用双荧光素酶报告基因系统评估miR-142-3p对HMGB1的靶向调控,采用Western blotting方法技术检测miR-142-3p干预后人正常肺上皮细胞(BEAS-2B)中下游调控蛋白表达。选择6~8周龄雌性C57BL/6小鼠,随机分为磷酸缓冲盐溶液(PBS)阴性对照组、尘螨致敏气道炎症组和尘螨致敏气道炎症+miR-142-3p干预组;采用苏木精-伊红(HE)染色评估小鼠气道炎症反应,应用瑞氏-吉姆萨染色和ELISA法检测支气管肺泡灌洗液(BALF)中炎症细胞和炎症因子表达水平。  结果  尘螨过敏哮喘患儿血清miR-142-3p表达水平较健康儿童血清降低(1.33±0.21,4.74±0.62,t=5.22,P<0.05)。粉尘螨粗提液(DFE)刺激BEAS-2B细胞后,miR-142-3p表达水平降低了(0.82±0.25);转染miR-142-3p后,其表达水平提升了(0.55±0.14)(t值分别为3.31,3.94,P值均<0.05)。miR-142-3p预处理可使DFE刺激后BEAS-2B细胞中炎症因子IL-6和TNF-α表达水平均降低(2.25±0.46,6.58±1.95)(t值分别为4.86,3.38,P值均<0.05);BEAS-2B细胞中miR-142-3p通过负调控HMGB1表达,降低下游调控蛋白Toll-样受体4蛋白(TLR4)和核因子-κB(NF-κB)表达。小鼠致敏模型显示miR-142-3p能够减轻尘螨致敏小鼠肺组织炎症细胞浸润;并且使尘螨致敏小鼠BALF中炎症因子白细胞介素-4(IL-4)、白细胞介素-5(IL-5)、HMGB1水平均降低[(107.60±10.43)pg/mL,(95.78±13.14)pg/mL,(2.52±0.87)pg/mL,t值分别为10.32,7.29,2.90,P值均<0.05]。  结论  miR-142-3p通过负调控HMGB1/TLR4/NF-κB通路减轻尘螨引起的儿童过敏性气道炎症。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • 图  1  miR-142-3p预处理后DFE刺激下BEAS-2B细胞活性变化

    Figure  1.  Changes in the viability of BEAS-2B cells after treatment with miR-142-3p and DFE stimulation

    图  2  miR-142-3p调控HMGB1影响DFE对BEAS-2B细胞致敏作用

    注:A为BEAS-2B各处理组HMGB1 mRNA表达水平;B为BEAS-2B各处理组HMGB1蛋白表达水平;C为HMGB1 3'UTR和miR-142-3p结合位点序列;D为双荧光素酶实验荧光相对值。*P<0.05。

    Figure  2.  miR-142-3p regulates HMGB1 involvement in DFE-induced sensitization of BEAS-2B cells

    图  3  尘螨过敏哮喘患儿血清中HMGB1表达及细胞中HMGB1下游调控蛋白表达

    注:A为尘螨过敏哮喘患儿和健康儿童血清中HMGB1表达水平;B为DFE或miR-142-3p+DFE处理下BEAS-2B细胞中HMGB1下游调控蛋白TLR4和NF-κB表达水平。*P<0.05。

    Figure  3.  Alterations of HMGB1 in house dust mite allergic children and change of downstream regulatory proteins in BEAS-2B cells

    图  4  miR-142-3p减轻尘螨致敏小鼠气道炎症反应

    注:A为小鼠肺组织切片HE染色局部放大(×200);B为小鼠BALF中炎症细胞瑞氏-吉姆萨染色局部放大(×400)。

    Figure  4.  miR-142-3p alleviated house dust mite-induced airway inflammation in mice

    表  1  miR-142-3p减轻DFE刺激下BEAS-2B细胞中炎症因子表达水平(x±s)

    Table  1.   miR-142-3p in reducing the expression of inflam- matory factors in BEAS-2B cells under DFE stimulation (x±s)

    组别 miR-142-3p TNF-α IL-6
    BEAS-2B 1.21±0.23 1.14±0.08 1.03±0.15
    BEAS-2B+DFE 0.39±0.07 10.80±1.88 4.18±0.45
    BEAS-2B-miR-142-3p+DFE 0.94±0.10 4.22±0.51 1.93±0.88
    下载: 导出CSV

    表  2  miR-142-3p减轻尘螨致敏小鼠BALF中炎症因子表达水平比较[(x±s),pg/mL]

    Table  2.   miR-142-3p in reducing the expression of inflammat- ory factors in BALF of house dust mite mice[(x±s), pg/mL]

    组别 IL-4 IL-5 HMGB1
    对照组 26.45±3.88 40.82±3.59 0.82±0.13
    尘螨致敏组 173.10±8.84 144.20±11.99 8.03±0.82
    尘螨致敏+miR-142-3p激动剂组 65.50±5.52 48.37±5.37 6.00±0.51
    下载: 导出CSV
  • [1] HOLGATE S T, WENZEL S, POSTMA D S, et al. Asthma[J]. Nat Rev Dis Primers, 2015, 1(1): 15025. doi: 10.1038/nrdp.2015.25
    [2] HUANG K, YANG T, XU J, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study[J]. Lancet, 2019, 394(10196): 407-418. doi: 10.1016/S0140-6736(19)31147-X
    [3] KANAGARATHAM C, RADZIOCH D. Allergic asthma: a summary from genetic basis, mouse studies, to diagnosis and treatment[J]. Curr Pharm Des, 2016, 22(41): 6261-6272. doi: 10.2174/1381612822666160829141708
    [4] THOMAS W R, HALES B J, SMITH W A. House dust mite allergens in asthma and allergy[J]. Trends Mol Med, 2010, 16(7): 321-328. doi: 10.1016/j.molmed.2010.04.008
    [5] SHIPP C L, GERGEN P J, GERN J E, et al. Asthma management in children[J]. J Allergy Clin Immunol Pract, 2023, 11(1): 9-18. doi: 10.1016/j.jaip.2022.10.031
    [6] GAN H, LUO W, HUANG Z, et al. House dust mite components sensitization profile in China, a multi-centre study[J]. Clin Exp Allergy, 2023, 53(2): 226-229. doi: 10.1111/cea.14255
    [7] SALIMINEJAD K, KHORRAM KHORSHID H R, SOLEYMANI FA-RD S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019, 234(5): 5451-5465. doi: 10.1002/jcp.27486
    [8] WANG X, GUO Y, WANG C, et al. microRNA-142-3p inhibits cho-ndrocyte apoptosis and inflammation in osteoarthritis by targeting HMGB1[J]. Inflammation, 2016, 39(5): 1718-1728. doi: 10.1007/s10753-016-0406-3
    [9] WANG Y, LIANG J, QIN H, et al. Elevated expression of miR-142-3p is related to the pro-inflammatory function of monocyte-derived dendritic cells in SLE[J]. Arthritis Res Ther, 2016, 18(1): 263. doi: 10.1186/s13075-016-1158-z
    [10] WU M, HUANG Z, HUANG W, et al. microRNA-124-3p attenuates myocardial injury in sepsis via modulating SP1/HDAC4/HIF-1α axis[J]. Cell Death Discov, 2022, 8(1): 40. doi: 10.1038/s41420-021-00763-y
    [11] GUIOT J, CAMBIER M, BOECKX A, et al. Macrophage-derived exosomes attenuate fibrosis in airway epithelial cells through delivery of antifibrotic miR-142-3p[J]. Thorax, 2020, 75(10): 870-881. doi: 10.1136/thoraxjnl-2019-214077
    [12] KLEINJAN A. Airway inflammation in asthma: key players beyond the Th2 pathway[J]. Curr Opin Pulm Med, 2016, 22(1): 46-52. doi: 10.1097/MCP.0000000000000224
    [13] DAVIS J D, WYPYCH T P. Cellular and functional heterogeneity of the airway epithelium[J]. Mucosal Immunol, 2021, 14(5): 978-990. doi: 10.1038/s41385-020-00370-7
    [14] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C(T)] Method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [15] BEREDA G. Bronchial asthma: etiology, pathophysiology, diagnosis and management[J]. Austin J Pulm Respir Med, 2022, 9(1): 1085.
    [16] LI X, SONG P, ZHU Y, et al. The disease burden of childhood asthma in China: a systematic review and Meta-analysis[J]. J Glob Health, 2020, 10(1): 010801. doi: 10.7189/jogh.10.010801
    [17] MAUER Y, TALIERCIO R M. Managing adult asthma: the 2019 GINA guidelines[J]. Cleve Clin J Med, 2020, 87(9): 569-575. doi: 10.3949/ccjm.87a.19136
    [18] SIMONEAU T, CLOUTIER M M. Controversies in pediatric asthma[J]. Pediatr Ann, 2019, 48(3): e128-e134.
    [19] WEIDNER J, BARTEL S, KILIÇ A, et al. Spotlight on microRNAs in allergy and asthma[J]. Allergy, 2021, 76(6): 1661-1678. doi: 10.1111/all.14646
    [20] QING X, ZHANG Y, PENG Y, et al. Mir-142-3p regulates inflammatory response by contributing to increased TNF-α in chronic rhinosinusitis with nasal polyposis[J]. Ear Nose Throat J, 2021, 100(1): NP50-NP56. doi: 10.1177/0145561319847972
    [21] BARTEL S, CARRARO G, ALESSANDRINI F, et al. miR-142-3p is associated with aberrant WNT signaling during airway remodeling in asthma[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 315(2): L328-L333. doi: 10.1152/ajplung.00113.2018
    [22] WANG J Y, DONG X, YU Z, et al. Borneol inhibits CD4+ T cells proliferation by down-regulating miR-26a and miR-142-3p to attenuate asthma[J]. Int Immunopharmacol, 2021, 90: 107223. doi: 10.1016/j.intimp.2020.107223
    [23] DUMITRIU I E, BARUAH P, MANFREDI A A, et al. HMGB1: an immmune odyssey[J]. Discov Med, 2005, 5(28): 388-392.
    [24] ZHAO Y, LI R. HMGB1 is a promising therapeutic target for asthma[J]. Cytokine, 2023, 165: 156171. doi: 10.1016/j.cyto.2023.156171
    [25] KO H K, HSU W H, HSIEH C C, et al. High expression of high-mobility group box 1 in the blood and lungs is associated with the development of chronic obstructive pulmonary disease in smokers[J]. Respirology, 2014, 19(2): 253-261. doi: 10.1111/resp.12209
    [26] CHENG Y, WANG D, WANG B, et al. HMGB1 translocation and release mediate cigarette smoke-induced pulmonary inflammation in mice through a TLR4/MyD88-dependent signaling pathway[J]. Mol Biol Cell, 2017, 28(1): 201-209. doi: 10.1091/mbc.e16-02-0126
    [27] HUANG W F, ZHAO H J, DONG H M, et al. High-mobility group box 1 impairs airway epithelial barrier function through the activation of the RAGE/ERK pathway[J]. Int J Mol Med, 2016, 37(5): 1189-1198. doi: 10.3892/ijmm.2016.2537
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  140
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-26
  • 修回日期:  2023-10-18
  • 网络出版日期:  2023-12-26
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回