留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膳食节律和昼夜节律与儿童青少年心血管健康关联及机制的研究进展

王瑜伟 任艳玲 陈昕 袁双贵 梁小华

王瑜伟, 任艳玲, 陈昕, 袁双贵, 梁小华. 膳食节律和昼夜节律与儿童青少年心血管健康关联及机制的研究进展[J]. 中国学校卫生, 2023, 44(10): 1582-1586. doi: 10.16835/j.cnki.1000-9817.2023.10.032
引用本文: 王瑜伟, 任艳玲, 陈昕, 袁双贵, 梁小华. 膳食节律和昼夜节律与儿童青少年心血管健康关联及机制的研究进展[J]. 中国学校卫生, 2023, 44(10): 1582-1586. doi: 10.16835/j.cnki.1000-9817.2023.10.032
WANG Yuwei, REN Yanling, CHEN Xin, YUAN Shuanggui, LIANG Xiaohua. Research progress on the association and mechanism between dietary rhythm, circadian rhythm and cardiovascular health in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2023, 44(10): 1582-1586. doi: 10.16835/j.cnki.1000-9817.2023.10.032
Citation: WANG Yuwei, REN Yanling, CHEN Xin, YUAN Shuanggui, LIANG Xiaohua. Research progress on the association and mechanism between dietary rhythm, circadian rhythm and cardiovascular health in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2023, 44(10): 1582-1586. doi: 10.16835/j.cnki.1000-9817.2023.10.032

膳食节律和昼夜节律与儿童青少年心血管健康关联及机制的研究进展

doi: 10.16835/j.cnki.1000-9817.2023.10.032
基金项目: 

国家自然科学基金面上项目 82373590

国家自然科学基金面上项目 81502826

重庆市技术创新与应用发展专项重点项目 CSTC2021jscx-gksb-N0001

重庆医科大学未来医学青年创新团队项目 W0088

详细信息
    作者简介:

    王瑜伟(1978-),男,重庆江津人,博士,主任技师,主要研究方向为临床检验诊断学

    通讯作者:

    梁小华,E-mail: xiaohualiang@hospital.cqmu.edu.cn

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R179  R714.252  R852.6

Research progress on the association and mechanism between dietary rhythm, circadian rhythm and cardiovascular health in children and adolescents

  • 摘要: 儿童血压升高会导致儿童期的血管损伤、心脏代谢风险和器官损伤等不良健康效应,而且会增加个体成年后的高血压风险。肥胖已被认为是儿童血压升高的重要原因,研究通过回顾与总结国内外相关文献,分析膳食节律与昼夜节律的联系,探讨昼夜节律对儿童青少年代谢健康的作用及机制,旨在为儿童青少年心血管疾病防治提供科学依据,并为今后研究提供启示。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • [1] BONAFINI S, GIONTELLA A, TAGETTI A, et al. Markers of subclinical vascular damages associate with indices of adiposity and blood pressure in obese children[J]. Hypertens Res, 2019, 42(3): 400-410. doi: 10.1038/s41440-018-0173-7
    [2] DI BONITO P, PACIFICO L, LICENZIATI M R, et al. Elevated blood pressure, cardiometabolic risk and target organ damage in youth with overweight and obesity[J]. Nutr Metab Cardiovasc Dis, 2020, 30(10): 1840-1847. doi: 10.1016/j.numecd.2020.05.024
    [3] WANG S R, ZHU Y B, CHENG Y, et al. Profiles of blood pressure among children and adolescents with different body mass index categories in Shandong, China[J]. Blood Press, 2018, 27(1): 56-61. doi: 10.1080/08037051.2017.1384308
    [4] LIBERALI R, KUPEK E, ASSIS M A A. Dietary patterns and childhood obesity risk: a systematic review[J]. Child Obes, 2020, 16(2): 70-85. doi: 10.1089/chi.2019.0059
    [5] TANG D, BU T, DONG X. Are parental dietary patterns associated with children's overweight and obesity in China?[J]. BMC Pediatr, 2020, 20(1): 12. doi: 10.1186/s12887-020-1910-z
    [6] BOSWELL N, BYRNE R, DAVIES P S W. Family food environment factors associated with obesity outcomes in early childhood[J]. BMC Obes, 2019, 6: 17. doi: 10.1186/s40608-019-0241-9
    [7] NGUYEN S, LI H, YU D, et al. Adherence to dietary recommendations and colorectal cancer risk: results from two prospective cohort studies[J]. Int J Epidemiol, 2020, 49(1): 270-280. doi: 10.1093/ije/dyz118
    [8] KININMONTH A, SMITH A, CARNELL S, et al. The association between childhood adiposity and appetite assessed using the Child Eating Behavior Questionnaire and Baby Eating Behavior Questionnaire: a systematic review and Meta-analysis[J]. Obes Rev, 2021, 22(5): e13169. doi: 10.1111/obr.13169
    [9] PAPAIOANNOU M A, POWER T G, O'CONNOR T M, et al. Child weight status: the role of feeding styles and highly motivated eating in children[J]. Children (Basel), 2023, 10(3): 507.
    [10] HUANG K P, RAYBOULD H E. Estrogen and gut satiety hormones in vagus-hindbrain axis[J]. Peptides, 2020, 133: 170389. doi: 10.1016/j.peptides.2020.170389
    [11] HAWLEY J A, SASSONE-CORSI P, ZIERATH J R. Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: from mice to men[J]. Diabetologia, 2020, 63(11): 2253-2259. doi: 10.1007/s00125-020-05238-w
    [12] REGMI P, HEILBRONN L K. Time-restricted eating: benefits, mechanisms, and challenges in translation[J]. Science, 2020, 23(6): 101161.
    [13] 王曜晖, 赵智权, 杜运松, 等. 昼夜节律与脂质代谢关系的研究进展[J]. 山东医药, 2018, 58(10): 99-102. doi: 10.3969/j.issn.1002-266X.2018.10.031

    WANG Y H, ZHAO Z Q, DU Y S, et al. Research progress on the relationship between circadian rhythm and lipid metabolism[J]. Shandong Med, 2018, 58(10): 99-102. (in Chinese) doi: 10.3969/j.issn.1002-266X.2018.10.031
    [14] FATIMA N, RANA S. Metabolic implications of circadian disruption[J]. Pflugers Arch, 2020, 472(5): 513-526. doi: 10.1007/s00424-020-02381-6
    [15] JHA P K, BOUAOUDA H, KALSBEEK A, et al. Distinct feedback actions of behavioural arousal to the master circadian clock in nocturnal and diurnal mammals[J]. Neurosci Biobehav Rev, 2021, 123: 48-60. doi: 10.1016/j.neubiorev.2020.12.011
    [16] BOIVIN D B, BOUDREAU P. Impacts of shift work on sleep and circadian rhythms[J]. Pathol Biol (Paris), 2014, 62(5): 292-301. doi: 10.1016/j.patbio.2014.08.001
    [17] ZOU M, NORTHSTONE K, PERRY R, et al. The association between later eating rhythm and adiposity in children and adolescents: a systematic review and Meta-analysis[J]. Nutr Rev, 2022, 80(6): 1459-1479. doi: 10.1093/nutrit/nuab079
    [18] SWIATKIEWICZ I, WOZNIAK A, TAUB P R. Time-restricted eating and metabolic syndrome: current status and future perspectives[J]. Nutrients, 2021, 13(1): 211. doi: 10.3390/nu13010211
    [19] 朱兵, 刘焕娜, 杨乃龙. 高脂低碳饮食在2型糖尿病治疗中的应用进展[J]. 中华糖尿病杂志, 2018, 10(8): 563-565. doi: 10.3760/cma.j.issn.1674-5809.2018.08.014

    ZHU B, LIU H N, YANG N L. Progress of high-fat and low-carbon diet in the treatment of type 2 diabetes[J]. Chin J Diabetes, 2018, 10(8): 563-565. (in Chinese) doi: 10.3760/cma.j.issn.1674-5809.2018.08.014
    [20] PAOLI A, TINSLEY G, BIANCO A, et al. The influence of meal frequency and timing on health in humans: the role of fasting[J]. Nutrients, 2019, 11(4): 719. doi: 10.3390/nu11040719
    [21] KOLBE I, LEINWEBER B, BRANDENBURGER M, et al. Circadian clock network desynchrony promotes weight gain and alters glucose homeostasis in mice[J]. Mol Metab, 2019, 30: 140-151. doi: 10.1016/j.molmet.2019.09.012
    [22] SHAN Z, LI Y, ZONG G, et al. Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: results from two large US cohorts of female nurses[J]. BMJ, 2018, 363: k4641.
    [23] DAMIOLA F, LE MINH N, PREITNER N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus[J]. Genes Dev, 2000, 14(23): 2950-2961. doi: 10.1101/gad.183500
    [24] GUAN D, LAZAR M A. Circadian regulation of gene expression and metabolism in the liver[J]. Semin Liver Dis, 2022, 42(2): 113-121. doi: 10.1055/a-1792-4240
    [25] PAVADHGUL P, BUMRUNGPERT A, HARJANI Y, et al. Oat porridge consumption alleviates markers of inflammation and oxidative stress in hypercholesterolemic adults[J]. Asia Pac J Clin Nutr, 2019, 28(2): 260-265.
    [26] ZEB F, WU X, CHEN L, et al. Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males[J]. Br J Nutr, 2020, 123(11): 1216-1226. doi: 10.1017/S0007114519003428
    [27] CHAIX A, LIN T, LE H D, et al. Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock[J]. Cell Metab, 2019, 29(2): 303-319. doi: 10.1016/j.cmet.2018.08.004
    [28] ZEB F, WU X, FATIMA S, et al. Time-restricted feeding regulates molecular mechanisms with involvement of circadian rhythm to prevent metabolic diseases[J]. Nutrition, 2021, 89: 111244. doi: 10.1016/j.nut.2021.111244
    [29] ZARRINPAR A, CHAIX A, YOOSEPH S, et al. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome[J]. Cell Metab, 2014, 20(6): 1006-1017. doi: 10.1016/j.cmet.2014.11.008
    [30] DANTAS MACHADO A C, BROWN S D, LINGARAJU A, et al. Diet and feeding pattern modulate diurnal dynamics of the ileal microbiome and transcriptome[J]. Cell Rep, 2022, 40(1): 111008. doi: 10.1016/j.celrep.2022.111008
    [31] TUCKER J M, SIEGEL R, MURRAY P J, et al. Acceptability of time-limited eating in pediatric weight management[J]. Front Endocrinol (Lausanne), 2022, 13: 811489. doi: 10.3389/fendo.2022.811489
    [32] GUPTA N J, KUMAR V, PANDA S. A camera-phone based study reveals erratic eating pattern and disrupted daily eating-fasting cycle among adults in India[J]. PLoS One, 2017, 12(3): e0172852. doi: 10.1371/journal.pone.0172852
    [33] ANTON S D, MOEHL K, DONAHOO W T, et al. Flipping the metabolic switch: understanding and applying the health benefits of fasting[J]. Obesity (Silver Spring), 2018, 26(2): 254-268. doi: 10.1002/oby.22065
    [34] LOPEZ-MINGUEZ J, GOMEZ-ABELLAN P, GARAULET M. Timing of breakfast, lunch, and dinner. effects on obesity and metabolic risk[J]. Nutrients, 2019, 11(11): 2624. doi: 10.3390/nu11112624
    [35] VERA B, DASHTI H S, GOMEZ-ABELLAN P, et al. Modifiable lifestyle behaviors, but not a genetic risk score, associate with metabolic syndrome in evening chronotypes[J]. Sci Rep, 2018, 8(1): 945. doi: 10.1038/s41598-017-18268-z
    [36] BONNELL E K, HUGGINS C E, HUGGINS C T, et al. Influences on dietary choices during day versus night shift in shift workers: a mixed methods study[J]. Nutrients, 2017, 9(3): 193. doi: 10.3390/nu9030193
    [37] QIAN J, MORRIS C J, CAPUTO R, et al. Ghrelin is impacted by the endogenous circadian system and by circadian misalignment in humans[J]. Int J Obes (Lond), 2019, 43(8): 1644-1649. doi: 10.1038/s41366-018-0208-9
    [38] KAKAMU T, HIDAKA T, KUMAGAI T, et al. Unhealthy changes in eating habits cause acute onset hypertension in the normotensive community-dwelling elderly-3 years cohort study[J]. Medicine (Baltimore), 2019, 98(15): e15071. doi: 10.1097/MD.0000000000015071
    [39] PALLA L, ALMOOSAWI S. Diurnal patterns of energy intake derived via principal component analysis and their relationship with adiposity measures in adolescents: results from the national diet and nutrition survey RP (2008-2012)[J]. Nutrients, 2019, 11(2): 422. doi: 10.3390/nu11020422
    [40] ZARRINPAR A, CHAIX A, PANDA S. Daily eating patterns and their impact on health and disease[J]. Trends Endocrinol Metab, 2016, 27(2): 69-83. doi: 10.1016/j.tem.2015.11.007
    [41] POT G K, ALMOOSAWI S, STEPHEN A M. Meal irregularity and cardiometabolic consequences: results from observational and intervention studies[J]. Proc Nutr Soc, 2016, 75(4): 475-486. doi: 10.1017/S0029665116000239
    [42] HA K, SONG Y. Associations of meal timing and frequency with obesity and metabolic syndrome among korean adults[J]. Nutrients, 2019, 11(10): 2437. doi: 10.3390/nu11102437
    [43] RAKSHIT K, MATVEYENKO A V. Induction of core circadian clock transcription factor bmal1 enhances beta-cell function and protects against obesity-induced glucose intolerance[J]. Diabetes, 2021, 70(1): 143-154. doi: 10.2337/db20-0192
    [44] YAMAMURO D, TAKAHASHI M, NAGASHIMA S, et al. Peripheral circadian rhythms in the liver and white adipose tissue of mice are attenuated by constant light and restored by time-restricted feeding[J]. PLoS One, 2020, 15(6): e0234439. doi: 10.1371/journal.pone.0234439
    [45] GALLOP M R, TOBIN S Y, CHAIX A. Finding balance: understanding the energetics of time-restricted feeding in mice[J]. Obesity (Silver Spring), 2023, 31(Suppl 1): 22-39.
    [46] AGARWAL N, MISHRA I, RANI S, et al. Temporal expression of clock genes in central and peripheral tissues of spotted munia under varying light conditions: evidence for circadian regulation of daily physiology in a non-photoperiodic circannual songbird species[J]. Chronobiol Int, 2018, 35(5): 617-632. doi: 10.1080/07420528.2017.1422742
    [47] IKEDA R, TSUCHIYA Y, KOIKE N, et al. REV-ERBa and REV-ERBβ function as key factors regulating mammalian circadian output[J]. Sci Rep, 2019, 9(1): 10171. doi: 10.1038/s41598-019-46656-0
    [48] QIU Z, MING H, LEI S, et al. Roles of HDAC3-orchestrated circadian clock gene oscillations in diabetic rats following myocardial ischaemia/reperfusion injury[J]. Cell Death Dis, 2021, 12(1): 43. doi: 10.1038/s41419-020-03295-y
    [49] BASSE A L, NIELSEN K N, KARAVAEVA I, et al. NAMPT-dependent NAD(+) biosynthesis controls circadian metabolism in a tissue-specific manner[J]. Proc Natl Acad Sci USA, 2023, 120(14): e2220102120. doi: 10.1073/pnas.2220102120
    [50] GARAULET M, SMITH C E, GOMEZ-ABELLAN P, et al. REV-ERB-ALPHA circadian gene variant associates with obesity in two independent populations: Mediterranean and North American[J]. Mol Nutr Food Res, 2014, 58(4): 821-829. doi: 10.1002/mnfr.201300361
    [51] ANDRIESSEN C, SCHRAUWEN P, HOEKS J. The importance of 24 h metabolism in obesity-related metabolic disorders: opportunities for timed interventions[J]. Int J Obes (Lond), 2021, 45(3): 479-490. doi: 10.1038/s41366-020-00719-9
    [52] JAVEED N, MATVEYENKO A V. Circadian etiology of type 2 diabetes mellitus[J]. Physiology (Bethesda), 2018, 33(2): 138-150.
  • 加载中
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  154
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 修回日期:  2023-10-07
  • 网络出版日期:  2023-10-27
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回