Relationship between polycyclic aromatic hydrocarbons internal exposure and lung function change among healthy college students
-
摘要:
目的 研究尿中单羟基多环芳烃代谢物(OH-PAHs)与肺功能之间的关系以及氧化应激在其中的中介作用,为空气污染治理与政策制定提供科学依据。 方法 招募华北理工大学45名健康大学生为研究对象,分别于2017年11月至2018年10月进行4次随访调查和健康体检,测量肺功能参数[用力肺活量(FVC)、1 s用力呼气量(FEV1)、呼气峰值流速(PEF)、FEV1/FVC和用力呼气流量(FEF25%~75%)]和尿液中7种暴露标志物OH-PAHs(∑7OH-PAHs)、氧化应激标志物8-羟基-2'-脱氧鸟苷(8-OHdG)、8-异前列腺素F2α(8-iso-PGF2α)。利用线性混合效应模型分析尿多环芳烃代谢物与肺功能之间的关系,并用中介模型评估氧化应激在OH-PAHs与肺功能之间关系中的中介效应。 结果 研究对象FVC、FEV1、FEV1/FVC、PEF和FEF25%~75%的中位数分别为4.37 L,3.58 L,83.00%,4.38 L/s和3.32 L/s。2-羟基芴(2-OHFlu)的对数转换值每增加1个(ln)单位,FVC下降5.05%(β%=-5.05%,95%CI=-8.85%~-1.09%),FEV1下降4.15%(β%=-4.15%,95%CI=-7.94%~-0.22%),FEF25%~75%下降5.87%(β%=-5.87%,95%CI=-11.35%~-0.05%)。2-OHFlu和9-羟基菲(9-OHPhe)的对数转换值每增加1个(ln)单位,PEF分别降低7.03%(β%=-7.03%,95%CI=-12.60%~-1.11%)和7.08%(β%=-7.08%,95%CI=-13.50%~-0.17%)。此外,尿∑7OH-PAHs与尿8-OHdG和8-iso-PGF2α水平呈正相关(r值分别为0.64,0.69,P值均<0.01)。同时,8-OHdG介导2-OHFlu与FVC和FEV1的相关性分别为17.06%和15.71%。 结论 健康大学生尿中OH-PAHs与肺功能呈负相关,8-OHdG在2-OHFlu与FVC和FEV1之间的关系中起介导作用。应积极制定相关政策治理空气污染,维护青年人的健康生活状态。 Abstract:Objective To investigate the relationship between urinary monohydroxylated metabolites of hydroxyl polycyclic aromatic hydrocarbons (OH-PAHs) and lung function, as well as the role of oxidative stress in these associations, so as to provide a scientific basis for air pollution control and policy formulation. Methods A panel study was carried out among 45 young healthy adults. Four follow-up surveys and health examinations were conducted from November 2017 to October 2018 to measure lung function parameters [forced vital capacity (FVC), second forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), FEV1/FVC, and forced expiratory flow between 25% and 75% vital capacity (FEF25%~75%)], markers of exposure to 7OH-PAHs [∑7OH-PAHs], and markers of oxidative stress[8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostaglandin-F2α (8-iso-PGF2α)]. The relationship between urinary PAH metabolites and lung function was quantified by linear mixed effects models. Mediation analysis was performed to assess the role of oxidative stress in the relationship between OH-PAHs and lung function. Results The median values of FVC, FEV1, FEVI/FVC, PEF, and FEF25%-75% were 4.37 L, 3.58 L, 83.00%, 4.38 L/s, and 3.32 L/s, respectively. The results showed that each 1-unit increase in log-transformed value of 2-Hydroxyfluorene (2-OHFlu) was associated with a 5.05% decrease (β%=-5.05%, 95%CI=-8.85%--1.09%) in FVC, 4.15% decrease (β%=-4.15%, 95%CI=-7.94%--0.22%) in FEV1 and 5.87% decrease (β%=-5.87%, 95%CI=-11.35%--0.05%) in FEF25%-75%, respectively. Each 1-unit increase in log-transformed values of 2-OHFlu and 9-Phenanthrol (9-OHPhe) was associated with a 7.03% decrease (β%=-7.03%, 95%CI=-12.60%--1.11%) and a 7.08% decrease (β%=-7.08%, 95%CI=-13.50%--0.17%) in PEF, respectively. Additionally, urinary ∑7OH-PAHs had a positive correlation with the levels of urinary 8-OHdG and 8-iso-PGF2α (r=0.64, 0.69, P < 0.01). Meanwhile, the levels of 8-OHdG mediated 17.06% and 15.71% of the association between 2-OHFlu with FVC and FEV1. Conclusion The finding reveales a negative relationship between urinary OH-PAHs and lung function among young healthy adults. The 8-OHdG plays a mediated role in the correlation of 2-OHFlu with FVC and FEV1. Active relevant policies are needed to control air pollution and maintain the healthy living conditions of young people. -
Key words:
- Polycyclic aromatic hydrocarbons /
- Lung /
- Oxidative stress /
- Students /
- Linear models
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 不同季节肺功能参数、尿中OH-PAHs及氧化应激标志物水平比较[M(IQR),n=45]
Table 1. Comparison of levels of lung function parameters, OH-PAHs and oxidative stress markers in urine in different seasons[M(IQR), n=45]
季节 FVC/L FEV1/L FEV1/FVC/(%) PEF/(L·s-1) FEF25%~75%/(L·s-1) 2-OHNapa 1-OHNapa 2-OHFlua 冬 4.15(2.01) 1.04(0.67) 88.00(6.00) 1.18(0.79) 0.91(0.76) 0.94(1.25) 2.41(2.70) 0.44(0.68) 春 5.00(1.43) 3.74(1.06) 80.00(9.00) 5.16(1.67) 3.79(1.24) 0.45(0.97) 2.36(2.46) 0.35(0.65) 夏 3.14(1.33) 3.52(1.20) 86.00(9.00) 2.97(1.47) 2.42(1.29) 0.32(0.94) 2.36(2.33) 0.53(0.61) 秋 4.79(0.83) 3.64(0.89) 80.00(7.00) 4.38(1.62) 3.34(1.08) 0.35(0.66) 2.16(2.42) 0.41(0.58) H值 61.72 45.30 25.47 47.61 35.15 19.35 3.58 4.70 P值 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.31 0.20 季节 3-OHPhea 9-OHPhea 1-OHPhea 1-OHPyra ∑7OH-PAHsa 8-OHdGa 8-iso-PGF2αa 冬 0.11(0.12) 0.47(0.56) 0.34(0.43) 4.70(4.55) 11.04(10.80) 20.27(22.02) 0.18(0.13) 春 0.08(0.11) 0.29(0.45) 0.20(0.25) 4.88(4.62) 8.60(10.66) 20.29(23.36) 0.16(0.26) 夏 0.09(0.09) 0.51(0.57) 0.27(0.42) 5.71(4.48) 10.61(10.09) 15.18(22.84) 0.08(0.11) 秋 0.08(0.13) 0.41(0.58) 0.22(0.46) 5.21(8.64) 10.61(13.17) 11.08(15.03) 0.06(0.07) H值 2.67 6.72 7.75 2.49 1.15 12.63 50.70 P值 0.45 0.08 0.05 0.48 0.77 0.01 <0.01 注:a单位为μg/g Cr。 表 2 氧化应激在尿多环芳烃代谢物与肺功能关系中的介导作用
Table 2. Mediating effect of oxidative stress(8-OHd Gand 8-iso-PGF2α) on the associations between urinary OH-PAHs and lung function parameters
OH-PAHs 中介变量 因变量 总效应(95%CI) 介导效应(95%CI) 2-OHFlu 8-OHdG FVC -0.05(-0.09~-0.01)* -0.01(-0.02~0.00) 8-OHdG FEV1 -0.04(-0.08~0.00)* -0.01(-0.03~0.00) 8-OHdG PEF -0.07(-0.12~-0.02)* -0.00(-0.02~0.01) 8-OHdG FEF25%~75% -0.05(-0.10~0.00)* -0.01(-0.02~0.01) 8-iso-PGF2α FVC -0.08(-0.12~-0.03)* 0.00(-0.01~0.01) 8-iso-PGF2α FEV1 -0.07(-0.12~-0.02)* 0.00(-0.01~0.01) 8-iso-PGF2α PEF -0.09(-0.14~-0.04)* 0.00(-0.01~0.01) 8-iso-PGF2α FEF25%~75% -0.07(-0.15~0.00)* 0.00(-0.01~0.01) 9-OHPhe 8-OHdG FVC -0.03(-0.07~0.01) -0.01(-0.03~0.00) 8-OHdG FEV1 -0.02(-0.06~0.03) -0.01(-0.03~0.00) 8-OHdG PEF -0.06(-0.11~0.01) -0.01(-0.03~0.02) 8-OHdG FEF25%~75% -0.02(-0.08~0.04) -0.01(-0.03~0.01) 8-iso-PGF2α FVC -0.03(-0.08~0.02) 0.00(-0.02~0.01) 8-iso-PGF2α FEV1 -0.02(-0.07~0.03) 0.00(-0.01~0.01) PEF -0.03(-0.11~0.04) -0.01(-0.03~0.01) 8-iso-PGF2α FEF25%~75% 0.00(-0.07~0.07) -0.01(-0.03~0.00) 注:*P<0.05。 -
[1] KIM K H, JAHAN S A, KABIR E, et al. A review of airborne polycyclic aromatic hydrocarbons(PAHs) and their human health effects[J]. Environ Int, 2013, 60: 71-80. doi: 10.1016/j.envint.2013.07.019 [2] KRISHNAN K. Chapter 1-introduction to big data, in data warehousing in the age of big data[M]. Boston: Morgan Kaufmann, 2013: 3-14. [3] FENG Y, SUN H, SONG Y, et al. A community study of the effect of polycyclic aromatic hydrocarbon metabolites on heart rate variability based on the Framingham risk score[J]. Occup Environ Med, 2014, 71(5): 338-345. doi: 10.1136/oemed-2013-101884 [4] BROCATO J, SUN H, SHAMY M, et al. Particulate matter from Saudi Arabia induces genes involved in inflammation, metabolic syndrome and atherosclerosis[J]. J Toxicol Environ Health A, 2014, 77(13): 751-766. doi: 10.1080/15287394.2014.892446 [5] HUANG X, ZHOU Y, CUI X, et al. Urinary polycyclic aromatic hydrocarbon metabolites and adult asthma: a case-control study[J]. Sci Rep, 2018, 8(1): 7658. doi: 10.1038/s41598-018-26021-3 [6] BARRAZA-VILLARREAL A, ESCAMILLA-NUÑEZ M C, SCHILM ANN A, et al. Lung function, airway inflammation, and polycyclic aromatic hydrocarbons exposure in mexican schoolchildren: a pilot study[J]. J Occup Environ Med, 2014, 56(4): 415-419. doi: 10.1097/JOM.0000000000000111 [7] ZHOU Y, SUN H, XIE J, et al. Urinary polycyclic aromatic hydrocarbon metabolites and altered lung function in Wuhan, China[J]. Am J Respir Crit Care Med, 2016, 193(8): 835-846. doi: 10.1164/rccm.201412-2279OC [8] ALHAMDOW A, ZETTERGREN A, KULL I, et al. Low-level exposure to polycyclic aromatic hydrocarbons is associated with reduced lung function among Swedish young adults[J]. Environ Res, 2021, 197: 111169. doi: 10.1016/j.envres.2021.111169 [9] MØLLER P, LOFT S. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution[J]. Environ Health Persp, 2010, 118(8): 1126-1136. doi: 10.1289/ehp.0901725 [10] FU P P, XIA Q, SUN X, et al. Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons(PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage[J]. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2012, 30(1): 1-41. doi: 10.1080/10590501.2012.653887 [11] NIU X, HO K F, CHUANG H C, et al. Comparison of cytotoxicity induced by PM2.5-bound polycyclic aromatic compounds from different environments in Xi'an, China[J]. Atmos Environ, 2019, 216(11): 116929. [12] VALAVANIDIS A, VLACHOGIANNI T, FIOTAKIS C. 8-hydroxy-2'-deoxyguanosine(8-OHdG): a critical biomarker of oxidative stress and carcinogenesis[J]. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2009, 27(2): 120-139. doi: 10.1080/10590500902885684 [13] CLAYTON D B, STEPHANY H A, CHING C B, et al. F2-isoprostanes as a biomarker of oxidative stress in the mouse bladder[J]. J Urol, 2014, 191(5): 1597-1601. [14] American Thoracic Society. Standardization of spirometry, 1994 Update[J]. Am J Respir Crit Care Med, 1995, 152(3): 1107-1136. doi: 10.1164/ajrccm.152.3.7663792 [15] 张磊, 方波, 王宏伟, 等. 高效液相色谱-荧光检测法同时测定健康人群尿液中7种羟基多环芳烃[J]. 环境化学, 2019, 38(11): 2435-2442. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201911004.htmZHANG L, FANG B, WANG H W, et al. Simultaneous determination of seven hydroxyl polycyclic aromatic hydrocarbons in urine of healthy people by high performance liquid chromatography-fluorescence detection[J]. Environ Chem, 2019, 38(11): 2435-2442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201911004.htm [16] ZHANG L, WANG H, YANG Z, et al. Personal PM2.5-bound PAH exposure, oxidative stress and lung function: the associations and mediation effects in healthy young adults[J]. Environ Pollut, 2022, 293: 118493. doi: 10.1016/j.envpol.2021.118493 [17] JIA C, BATTERMAN S. A critical review of naphthalene sources and exposures relevant to indoor and outdoor air[J]. Int J Environ Res Public Health, 2010, 7(7): 2903-2939. doi: 10.3390/ijerph7072903 [18] MOTORYKIN O, SCHRLAU J, JIA Y, et al. Determination of parent and hydroxy PAHs in personal PM2.5 and urine samples collected during Native American fish smoking activities[J]. Sci Total Environ, 2015, 505: 694-703. doi: 10.1016/j.scitotenv.2014.10.051 [19] SUN L, YE Z, LING Y, et al. Relationship between polycyclic aromatic hydrocarbons and rheumatoid arthritis in US general population, NHANES 2003-2012[J]. Sci Total Environ, 2020, 704: 135294. doi: 10.1016/j.scitotenv.2019.135294 [20] THAI P K, LI Z, SJÖDIN A, et al. Biomonitoring of polycyclic aromatic hydrocarbons exposure in small groups of residents in Brisbane, Australia and Hanoi, Vietnam, and those travelling between the two cities[J]. Chemosphere, 2015, 139: 358-364. doi: 10.1016/j.chemosphere.2015.07.004 [21] CHEN L, HU G, FAN R, et al. Association of PAHs and BTEX exposure with lung function and respiratory symptoms among a nonoccupational population near the coal chemical industry in Northern China[J]. Environ Int, 2018, 120: 480-488. doi: 10.1016/j.envint.2018.08.004 [22] WU S, DENG F, WANG X, et al. Association of lung function in a panel of young healthy adults with various chemical components of ambient fine particulate air pollution in Beijing, China[J]. Atmos Environ, 2013, 77: 873-884. doi: 10.1016/j.atmosenv.2013.06.018 [23] WANG S, BAI Y, DENG Q, et al. Polycyclic aromatic hydrocarbons exposure and lung function decline among coke-oven workers: a four-year follow-up study[J]. Environ Res, 2016, 150: 14-22. doi: 10.1016/j.envres.2016.05.025 [24] CAKMAK S, HEBBERN C, CAKMAK J D, et al. The influence of polycyclic aromatic hydrocarbons on lung function in a representative sample of the Canadian population[J]. Environ Pollut, 2017, 228: 1-7. doi: 10.1016/j.envpol.2017.05.013 [25] HOU J, YIN W, LI P, et al. Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J]. J Hazard Mater, 2020, 386: 121663. doi: 10.1016/j.jhazmat.2019.121663 [26] CHOI Y H, KIM J H, HONG Y C. CYP1A1 genetic polymorphism and polycyclic aromatic hydrocarbons on pulmonary function in the elderly: haplotype-based approach for gene-environment interaction[J]. Toxicol Lett, 2013, 221(3): 185-190. doi: 10.1016/j.toxlet.2013.06.229 [27] ZHANG Z, CHANG L Y, LAU A K H, et al. Satellite-based estimates of long-term exposure to fine particulate matter are associated with C-reactive protein in 30 034 Taiwanese adults[J]. Int J Epidemiol, 2017, 46(4): 1126-1136. doi: 10.1093/ije/dyx069 [28] YANG L, WANG W C, LUNG S C, et al. Polycyclic aromatic hydrocarbons are associated with increased risk of chronic obstructive pulmonary disease during haze events in China[J]. Sci Total Environ, 2017, 574: 1649-1658. doi: 10.1016/j.scitotenv.2016.08.211 [29] BORTEY-SAM N, IKENAKA Y, AKOTO O, et al. Oxidative stress and respiratory symptoms due to human exposure to polycyclic aromatic hydrocarbons(PAHs) in Kumasi, Ghana[J]. Environ Pollut, 2017, 228: 311-320. doi: 10.1016/j.envpol.2017.05.036 [30] KUANG H, LIU J, ZENG Y, et al. Co-exposure to polycyclic aromatic hydrocarbons, benzene and toluene may impair lung function by increasing oxidative damage and airway inflammation in asthmatic children[J]. Environ Pollut, 2020, 266: 115220. doi: 10.1016/j.envpol.2020.115220 -

计量
- 文章访问数: 391
- HTML全文浏览量: 252
- PDF下载量: 20
- 被引次数: 0