Research progress on the association between violet light and myopia
-
摘要: 近视已经成为全球性的重要公共卫生问题,户外活动对近视保护作用的本质原因可能是户外光线的暴露,越来越多的研究关注光谱对眼健康的影响。有研究发现紫光可能对近视具有保护作用,但两者之间的关联机制尚未明确。文章就紫光与近视防控的关联及其可能机制作出综述,为进一步探索紫光防控近视的作用提供参考。Abstract: Myopia has become a major global public health problem. Exposure to outdoor light may explain the protective effect of outdoor activities on myopia. Currently, a growing number of studies focus on the effects of the spectrum on eye health. Recent studies have found that violet light may have a protective effect on myopia, but the mechanism of action between violet light and myopia is not yet fully understood. The paper reviews the association between violet light and myopia prevention and control, and the possible mechanisms of violet light and myopia to provide a reference value for further exploration of the role of violet light on myo-pia.
-
Key words:
- Light /
- Wave length /
- Myopia /
- Research
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 纳入文献相关信息
Table 1. Information of included literature
第一作者与年份 国家 研究方法 样本量 研究对象 研究结果 Torii(2017)[8] 日本 ①实验研究
②临床试验39只/
147名雏鸡/13~18岁近视学生 (1)与对照组相比,接受VL照射的小鸡遮盖眼屈光度变化更小(-4.59,-15.18 D);(2)与对照组相比,佩戴VL透射的隐形眼镜学生AL变化更小(0.14,0.19 mm)。 Torii(2017)[14] 日本 队列研究 26名 年龄>25周岁的高度近视患者 与对照组相比,植入VL透射的人工晶状体5年内的屈光度和AL变化更小(-0.49,-1.09 D;0.09,0.38 mm)。 Wang(2018)[9] 中国
德国实验研究 77只 雏鸡 雏鸡在VL暴露5 d时形觉剥夺眼近视进展少于WL暴露组(-5.07,-7.88 D),前房深度夜更短[(0.96±0.018)(1.04±0.031)mm]。 Ofuji(2020)[15] 日本 病例报告 1名 患有屈光参差性弱视的4岁男童 该儿童在佩戴VL透射框架眼镜的2年里,右眼和左眼的AL、脉络膜厚度和屈光度变化分别为(+0.85,-0.20 mm;+4.9,+115.7 μm;-1.02,+1.88 D)。 Strickland(2020)[16] 美国 实验研究 93只 小鼠 在野生小鼠中,与暴露在WL下的小鼠相比,短波长VL诱导了远视且抑制了近视;在视网膜锥细胞失功能小鼠模型中,VL不会诱导远视或抑制近视。 Mori(2021)[17] 日本 临床试验 113名 6~12岁近视儿童 在24个月时,佩戴VL透射框架眼镜儿童调整后AL变化平均值小于对照组;其调整后SE变化平均值小于对照组,但无统计学意义。 Kobashi(2021)[18] 日本 临床试验 20名 年龄≥15周岁角膜扩张症患者 在基线前1年和6个月观测期间,角膜最大曲率的平均变化分别为(6.03±3.41)D和(-0.81±3.34)D。 Jiang(2021)[10] 日本 实验研究 40只 小鼠 与绿光(green light, GL),RL,BL相比,VL显著抑制了小鼠屈光变化和AL增长。 Torii(2022)[19] 日本 临床试验 43名 6~12岁近视儿童 与对照组相比,佩戴发射VL框架眼镜的儿童屈光度、AL、脉络膜厚度变化均有统计学意义。 Jeong (2023)[11] 日本 实验研究 39只 小鼠 70%和100% VL透过率晶状体诱导的小鼠近视眼较40% VL透过率晶状体诱导的小鼠近视眼近视进展程度更少,AL增长的抑制作用更明显,脉络膜增厚更明显。 -
[1] MORGAN I G, WU P C, OSTRIN L A, et al. IMI risk factors for myopia[J]. Invest Ophthalmol Vis Sci, 2021, 62(5): 3. doi: 10.1167/iovs.62.5.3 [2] 陶芳标, 潘臣炜, 伍晓艳, 等. 户外活动防控儿童青少年近视专家推荐[J]. 中国学校卫生, 2019, 40(5): 641-643. doi: 10.16835/j.cnki.1000-9817.2019.05.001TAO F B, PAN C W, WU X Y, et al. Expert recommendation for outdoors activities as myopia prevention and control in children and adolescents[J]. Chin J Sch Health, 2019, 40(5): 641-643. (in Chinese) doi: 10.16835/j.cnki.1000-9817.2019.05.001 [3] DHAKAL R, SHAH R, HUNTJENS B, et al. Time spent outdoors as an intervention for myopia prevention and control in children: an overview of systematic reviews[J]. Ophthalmic Physiol Opt, 2022, 42(3): 545-558. doi: 10.1111/opo.12945 [4] 李澜, 唐秀平, 邹云春, 等. 不同光照度的全光谱白光对人体眼轴的短期影响研究[J]. 四川医学, 2020, 41(1): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SCYX202001008.htmLI L, TANG X P, ZOU Y C, et al. Short-term effects of full-spectrum white light with different illuminance on human eye axis[J]. Sichuan Med J, 2020, 41(1): 24-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCYX202001008.htm [5] 《重复低强度红光照射辅助治疗儿童青少年近视专家共识(2022)》专家组, 许迅, 何明光, 等. 重复低强度红光照射辅助治疗儿童青少年近视专家共识(2022)[J]. 中华实验眼科杂志, 2022, 40(7): 599-603.Expert Workgroup of Expert Consensus on Repeated Low-Level Red-light as an Alternative Treatment for Childhood Myopia 2022, XU X, HE M G, et al. Expert consensus on repeated low-level red-light as an alternative treatment for childhood myopia(2022)[J]. Chin J Exp Ophthalmol, 2022, 40(7): 599-603. (in Chinese) [6] 王雨薇, 仇纯婷, 张旭. 户外蓝光抑制近视相关机制的研究进展[J]. 眼科新进展, 2018, 38(10): 905-908. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201810003.htmWANG Y W, QIU C T, ZHANG X. Potential mechanisms of blue light outdoors against myopia[J]. Rec Adv Ophthalmol, 2018, 38(10): 905-908. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201810003.htm [7] 美国眼科学会. 临床光学[M]. 石一宁, 方严主, 译. 西安: 陕西科学技术出版社, 2019: 181-183.American Association of Ophthalmology. Clinical optics[M]. SHI Y N, FANG Y Z, translate. Xi'an: Shaanxi Science and Technology Press, 2019: 181-183. (in Chinese) [8] TORII H, KURIHARA T, SEKO Y, et al. Violet light exposure can be a preventive strategy against myopia progression[J]. EBio Med, 2017, 15: 210-219. [9] WANG M, SCHAEFFEL F, JIANG B, et al. Effects of light of different spectral composition on refractive development and retinal dopamine in chicks[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4413-4424. doi: 10.1167/iovs.18-23880 [10] JIANG X, PARDUE M T, MORI K, et al. Violet light suppresses lens-induced myopia via neuropsin (OPN5) in mice[J]. Proc Natl Acad Sci USA, 2021, 118(22): e2018840118. doi: 10.1073/pnas.2018840118 [11] JEONG H, KURIHARA T, JIANG X, et al. Suppressive effects of violet light transmission on myopia progression in a mouse model of lens-induced myopia[J]. Exp Eye Res, 2023, 228: 109414. doi: 10.1016/j.exer.2023.109414 [12] ZELLER K, MVHLEISEN S, SHANMUGARAJAH P, et al. Influence of visible violet, blue and red light on the development of cataract in porcine Lenses[J]. Medicina(kaunas), 2022, 58(6): 721. [13] PARK J W, CHOI C Y. Comparative spectrophotometer analysis of ultraviolet-light filtering, blue-light filtering, and violet-light filtering intraocular Lenses[J]. Korean J Ophthalmol, 2022, 36(1): 1-5. [14] TORII H, OHNUMA K, KURIHARA T, et al. Violet light transmission is related to myopia progression in adult high myopia[J]. Sci Rep, 2017, 7(1): 14523. [15] OFUJI Y, TORII H, YOTSUKURA E, et al. Axial length shortening in a myopic child with anisometropic amblyopia after wearing violet light-transmitting eyeglasses for 2 years[J]. Am J Ophthalmol Case Rep, 2020, 20: 101002. [16] STRICKLAND R, LANDIS E G, PARDUE M T. Short-wavelength (violet) light protects mice from myopia through cone signaling[J]. Invest Ophthalmol Vis Sci, 2020, 61(2): 13. [17] MORI K, TORII H, HARA Y, et al. Effect of violet light-transmitting eyeglasses on axial elongation in myopic children: a randomized controlled trial[J]. J Clin Med, 2021, 10(22): 5462. [18] KOBASHI H, TORII H, TODA I, et al. Clinical outcomes of keravio using violet light: emitting glasses and riboflavin drops for corneal ectasia: a pilot study[J]. Br J Ophthalmol, 2021, 105(10): 1376-1382. [19] TORII H, MORI K, OKANO T, et al. Short-term exposure to violet light emitted from eyeglass frames in myopic children: a randomized pilot clinical trial[J]. J Clin Med, 2022, 11(20): 6000. [20] TARTTELIN E E, BELLINGHAM J, HANKINS M W, et al. Neuropsin (OPN5): a novel opsin identified in mammalian neural tissue[J]. FEBS Lett, 2003, 554(3): 410-416. [21] KOJIMA D, MORI S, TORII M, et al. UV-Sensitive photoreceptor protein OPN5 in humans and mice[J]. PLoS One, 2011, 6(10): e26388. [22] YAMASHITA T, OHUCHI H, TOMONARI S, et al. OPN5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein[J]. Proc Natl Acad Sci USA, 2010, 107(51): 22084-22089. [23] NGUYEN M T, VEMARAJU S, NAYAK G, et al. An opsin 5-dopamine pathway mediates light-dependent vascular development in the eye[J]. Nat Cell Biol, 2019, 21(4): 420-429. [24] 戴锦晖. 色觉在眼屈光发育中的作用[J]. 眼科新进展, 2015, 35(2): 101-103. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201502001.htmDAI J H. Role of color vision in development of ocular refraction[J]. Rec Adv Ophthalmol, 2015, 35(2): 101-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201502001.htm [25] HU M, HU Z, XUE L, et al. Guinea pigs reared in a monochromatic environment exhibit changes in cone density and opsin expression[J]. Exp Eye Res, 2011, 93(6): 804-809. -

表(1)
计量
- 文章访问数: 704
- HTML全文浏览量: 335
- PDF下载量: 120
- 被引次数: 0