留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孤独症谱系障碍男童感觉运动网络最优频率异常发育模式

卢春赢 张浅阅 陈雪 李博文 贺碧芳 叶绍兵 陈恒

卢春赢, 张浅阅, 陈雪, 李博文, 贺碧芳, 叶绍兵, 陈恒. 孤独症谱系障碍男童感觉运动网络最优频率异常发育模式[J]. 中国学校卫生, 2023, 44(3): 344-347. doi: 10.16835/j.cnki.1000-9817.2023.03.006
引用本文: 卢春赢, 张浅阅, 陈雪, 李博文, 贺碧芳, 叶绍兵, 陈恒. 孤独症谱系障碍男童感觉运动网络最优频率异常发育模式[J]. 中国学校卫生, 2023, 44(3): 344-347. doi: 10.16835/j.cnki.1000-9817.2023.03.006
LU Chunying, ZHANG Qianyue, CHEN Xue, LI Bowen, HE Bifang, YE Shaobing, CHEN Heng. Atypical developmental of the sensorimotor network optimal frequency in children with autism spectrum disorder[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2023, 44(3): 344-347. doi: 10.16835/j.cnki.1000-9817.2023.03.006
Citation: LU Chunying, ZHANG Qianyue, CHEN Xue, LI Bowen, HE Bifang, YE Shaobing, CHEN Heng. Atypical developmental of the sensorimotor network optimal frequency in children with autism spectrum disorder[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2023, 44(3): 344-347. doi: 10.16835/j.cnki.1000-9817.2023.03.006

孤独症谱系障碍男童感觉运动网络最优频率异常发育模式

doi: 10.16835/j.cnki.1000-9817.2023.03.006
基金项目: 

国家自然科学基金 61901129

国家自然科学基金 61901130

贵州省科技厅科学技术基金一般项目 [2020]1Y345

详细信息
    作者简介:

    卢春赢(1999-),女,浙江磐安人,在读硕士,主要研究方向为精神疾病脑功能图像、静息态功能磁共振图像分析

    通讯作者:

    叶绍兵,E-mail: yesb1971@163.com

    陈恒,E-mail: hchen13@gzu.edu.cn

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R748  R179

Atypical developmental of the sensorimotor network optimal frequency in children with autism spectrum disorder

  • 摘要:   目的  基于功能连接优势频率指标,采用“脑年龄”分析方法,探索孤独症谱系障碍(autism spectrum disorder, ASD)男童感觉运动相关网络的异常发育模式。  方法  筛选来自ABIDE数据库中105例ASD男童与匹配的102例正常发育男童的静息态功能磁共振数据(7~12岁)。每个被试构建感觉运动相关脑区不同频段下的功能连接网络,然后计算每条连接最强连接值所在的频率作为该连接的最优频率。采用脑年龄分析方法探索ASD男童脑年龄相对于生理年龄的年龄差。  结果  ASD男童大脑感觉运动网络出现“过发育”到“欠发育”的异常发育模式,2种模式的转换在7.8岁左右。“欠发育”趋势得到抑制的大龄ASD男童(10岁以上)病情严重程度相对更轻(r=-0.43,P < 0.05)。  结论  ASD男童大脑感觉运动网络存在异常发育过程,感觉运动网络脑-生理年龄差有作为衡量ASD疾病发展过程的神经影像学标记物潜力。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • 图  1  正常发育儿童脑年龄与生理年龄分析模型效果

    Figure  1.  Effect of brain age and chronological age analysis model of normal developing child

    图  2  正常发育儿童脑-生理年龄差与生理年龄的关联

    Figure  2.  Correlation between brain-chronological age difference and chronological age in normal developing child

    图  3  ASD患儿脑年龄与生理年龄分析模型效果

    Figure  3.  Effect of brain age and chronological age analysis model for child with ASD

    图  4  ASD患者生理年龄与脑-生理年龄差的关联

    Figure  4.  Correlation between physiological age and brain-physiological age difference in patients with autism spectrum disorder

  • [1] LAI M C, LOMBARDO M V, BARON-COHEN S. Autism[J]. Lancet, 2014, 383(9920): 896-910. doi: 10.1016/S0140-6736(13)61539-1
    [2] BISWAL B B, MENNES M, ZUO X N, et al. Toward discovery science of human brain function[J]. Proc Natl Acad Sci USA, 2010, 107(10): 4734-4739. doi: 10.1073/pnas.0911855107
    [3] WANG J, FU K, CHEN L, et al. Increased gray matter volume and resting-state functional connectivity in somatosensory cortex and their relationship with autistic symptoms in young boys with autism spectrum disorder[J]. Front Physiol, 2017, 8: 588. doi: 10.3389/fphys.2017.00588
    [4] CHEN H, WANG J, UDDIN L Q, et al. Aberrant functional connectivity of neural circuits associated with social and sensorimotor deficits in young children with autism spectrum disorder[J]. Autism Res, 2018, 11(12): 1643-1652. doi: 10.1002/aur.2029
    [5] SUPEKAR K, MUSEN M, MENON V. Development of large-scale functional brain networks in children[J]. PLoS Biol, 2009, 7(7): e1000157. doi: 10.1371/journal.pbio.1000157
    [6] BROWN T T, KUPERMAN J M, CHUNG Y, et al. Neuroanatomical assessment of biological maturity[J]. Curr Biol, 2012, 22(18): 1693-1698. doi: 10.1016/j.cub.2012.07.002
    [7] ZUO X N, DI MARTINO A, KELLY C, et al. The oscillating brain: complex and reliable[J]. Neuroimage, 2010, 49(2): 1432-1445. doi: 10.1016/j.neuroimage.2009.09.037
    [8] CHEN H, DUAN X, LIU F, et al. Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity-a multi-center study[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 64: 1-9. doi: 10.1016/j.pnpbp.2015.06.014
    [9] DUAN X, CHEN H, HE C, et al. Resting-state functional under-connectivity within and between large-scale cortical networks across three low-frequency bands in adolescents with autism[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 79(PtB): 434-441.
    [10] DI MARTINO A, YAN C G, LI Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[J]. Mol Psychiatry, 2014, 19(6): 659-667. doi: 10.1038/mp.2013.78
    [11] DI MARTINO A, O'CONNOR D, CHEN B, et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange Ⅱ[J]. Sci Data, 2017, 4: 170010. doi: 10.1038/sdata.2017.10
    [12] GUO X, DUAN X, CHEN H, et al. Altered inter-and intrahemispheric functional connectivity dynamics in autistic children[J]. Hum Brain Mapp, 2020, 41(2): 419-428. doi: 10.1002/hbm.24812
    [13] YAN C G, WANG X D, ZUO X N, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. doi: 10.1007/s12021-016-9299-4
    [14] DOSENBACH N U, NARDOS B, COHEN A L, et al. Prediction of individual brain maturity using fMRI[J]. Science, 2010, 329(5997): 1358-1361. doi: 10.1126/science.1194144
    [15] SHANNON C E. The mathematical theory of communication. 1963[J]. MD Comput, 1997, 14(4): 306-317.
    [16] NENADIC I, DIETZEK M, LANGBEIN K, et al. Brain AGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder[J]. Psychiatry Res Neuroimag, 2017, 266: 86-89. doi: 10.1016/j.pscychresns.2017.05.006
    [17] LIANG H, ZHANG F, NIU X. Investigating systematic bias in brain age estimation with application to post-traumatic stress disorders[J]. Hum Brain Mapp, 2019, 40(11): 3143-3152. doi: 10.1002/hbm.24588
    [18] BISWAL B, YETKIN F Z, HAUGHTON V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magn Reson Med, 1995, 34(4): 537-541. doi: 10.1002/mrm.1910340409
    [19] CHEN H, DUAN X, LIU F, et al. Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity: a multi-center study[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 64: 1-9. doi: 10.1016/j.pnpbp.2015.06.014
    [20] LONG J, LU F, YANG S, et al. Different functional connectivity optimal frequency in autism compared with HCs and the relationship with social communication deficits: evidence from gene expression and behavior symptom analysis[J]. Human Brain Mapp, 2023, 44(1): 258-268. doi: 10.1002/hbm.26011
    [21] AMARAL D G, SCHUMANN C M, NORDAHL C W. Neuroanatomy of autism[J]. Trends Neurosci, 2008, 31(3): 137-145. doi: 10.1016/j.tins.2007.12.005
  • 加载中
计量
  • 文章访问数:  441
  • HTML全文浏览量:  253
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-12-18
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回