留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

儿童青少年24 h活动行为与肥胖关联的系统评价

张婷 李红娟 张曌华 郜艳晖

张婷, 李红娟, 张曌华, 郜艳晖. 儿童青少年24 h活动行为与肥胖关联的系统评价[J]. 中国学校卫生, 2023, 44(1): 23-27. doi: 10.16835/j.cnki.1000-9817.2023.01.005
引用本文: 张婷, 李红娟, 张曌华, 郜艳晖. 儿童青少年24 h活动行为与肥胖关联的系统评价[J]. 中国学校卫生, 2023, 44(1): 23-27. doi: 10.16835/j.cnki.1000-9817.2023.01.005
ZHANG Ting, LI Hongjuan, ZHANG Zhaohua, GAO Yanhui. A systematic review of the association between 24-hour movement behavior and obesity in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2023, 44(1): 23-27. doi: 10.16835/j.cnki.1000-9817.2023.01.005
Citation: ZHANG Ting, LI Hongjuan, ZHANG Zhaohua, GAO Yanhui. A systematic review of the association between 24-hour movement behavior and obesity in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2023, 44(1): 23-27. doi: 10.16835/j.cnki.1000-9817.2023.01.005

儿童青少年24 h活动行为与肥胖关联的系统评价

doi: 10.16835/j.cnki.1000-9817.2023.01.005
基金项目: 

国家社会科学基金教育学重点课题项目 ALA190015

详细信息
    作者简介:

    张婷(1996-  ), 女, 江苏连云港人, 在读博士, 主要研究方向为身体活动与健康促进

    通讯作者:

    李红娟, E-mail: janerobin@126.com

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R723.14  G806  R179

A systematic review of the association between 24-hour movement behavior and obesity in children and adolescents

  • 摘要:   目的  针对基于成分数据分析的研究,系统评价身体活动(physical activity, PA)、久坐行为(sedentary behavior, SB)和睡眠与肥胖的关联或等时替代效应,为儿童青少年肥胖干预提供参考。  方法  在中国知网、万方数据库、PubMed、SPORTDiscus、Web of Science和Medline数据库检索发表于2014年1月1日至2022年5月1日的相关研究。2名有经验的评价员独立完成文献的筛选、数据提取以及质量评估。  结果  共纳入文献16篇,文献质量得分范围为7~12分。中高强度身体活动(moderate to vigorous physical activity, MVPA)、睡眠与肥胖均呈负相关,且MVPA替代其他行为可降低肥胖风险,替代时间为1.5~60 min/d。低强度身体活动(light physical activity, LPA)、SB与肥胖均呈正相关(P值均 < 0.05)。  结论  MVPA是儿童青少年肥胖干预的主要着眼点,在现有身体活动水平的基础上,每周增加60 min的MVPA可能是降低肥胖风险的最小量。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • 图  1  文献筛查流程

    Figure  1.  Literature screening flow

    表  1  纳入研究基本特征与质量评估的成分多元回归分析

    Table  1.   Basic features and quality assessment of the included studies: compositional multiple regression

    第一作者及年份 样本特征 样本量 加速度计 切点值 结局 协变量 多元回归结果 得分
    Carson[12](2016) 6~17岁,加拿大 4 169/2 742 腰戴,Actical SB:< 100 CPM;LPA:100~1 499 CPM;MVPA:≥1 500 CPM;睡眠:自我报告 Z BMI、腰围 年龄、性别和最高家庭教育水平 SB、LPA与肥胖(+),MVPA、睡眠与之(-) 9
    Dumuid[13](2018) 9~11岁,12个国家 5 828 腰戴,ActiGraph GT3X+ SB:≤25次/15 s;LPA:26~573次/15 s;MVPA:≥574次/15 s;睡眠:算法 Z BMI 性别、父母最高教育水平、父母和兄弟姐妹数量、研究地点 SB、LPA与ZBMI(+),睡眠、MVPA与之(-) 9
    Gába[16] (2021) 8~18岁,捷克共和国 336 腕戴,ActiGraph GT9X Link或wGT3X-BT 以VM定义,SB:< 306次/5 s;LPA:306~817次/5 s;MPA:818~1 968次/5 s;VPA:≥1 969次/5 s;睡眠:算法 BF%、FMI 年龄、地区、季节 男女校外SB与BF%、FMI(+);女生校外LPA与BF%(-);校内SB、校内LPA、校内外MPA和VPA以及睡眠与肥胖(0) 9
    Gába[17] (2020) 7~12岁,捷克共和国 425 腰戴,ActiGraph GT3X Evenson切点值 BF%、FMI、VAT 年龄、性别 中等SB时间(10~29 min)与BF%和VAT(+);MVPA与BF%、FMI和VAT(-);总SB时间、短SB时间(< 10 min)和长SB时间(≥30 min)与肥胖(0) 10
    Štefelová[19](2018) 11.8~18.9岁,捷克共和国 420 ActiGraph GT3X Evenson切点值 Z BMI 性别、年龄、体重、身高 SB与Z BMI(+);VPA与之(-);LPA、MPA与Z BMI(0) 8
    Talarico[20](2018) 10~13岁,加拿大 434 腰戴,Actical SB:< 100 CPM;LPA:100~1 499 CPM;MVPA:>1 499 CPM;睡眠:日志 Z BMI、腰围、FMI 年龄、性别、成熟度、数据收集季节、佩戴时间、屏前零食频率 MVPA与肥胖(-);LPA与肥胖指标(+);SB和睡眠与肥胖(0) 7
    Carson[23](2019) 6~17岁,美国 2 544 腰戴,单轴ActiGraph 7164 SB:< 100 CPM;LPA:100 CPM~ < 4 METs;MPA:4~ < 7 METs;VPA:≥7 METs Z BMI、腰围 年龄、性别、种族/民族、社会经济地位、吸烟、总能量摄入、钠、饱和脂肪 VPA与Z BMI和腰围(-);SB与腰围(+);LPA、MPA与肥胖(0) 7
    Taylor[11](2019)# 6~10岁,新西兰 574 腰戴,ActiGraph GT3X Evenson切点值;睡眠:算法 Z BMI 年龄、性别、剥夺指数、种族 睡眠、MVPA与Z BMI(-);LPA与Z BMI(+);SB与Z BMI(0) 10
    李东[22] (2020) 9~12岁,中国 80 腰戴,ActiGraph GT3X Evenson切点值 BMI、BF%、腰高比、腰臀比 年龄(不确定) 男女生MVPA与BF%、腰高比和腰臀比(-);男生SB与腰臀比(+),女生SB与BF%(+);男生LPA与BF%(+),女生LPA与BMI(-);男生睡眠与肥胖(0),女生睡眠与腰臀比、腰高比(+);男生4种活动行为均与BMI(0) 7
    Zhang[21](2022) 11~14岁,中国 241 腰戴,ActiGraph GT3X Evenson切点值;睡眠:24 h减去清醒时间 BMI 年龄、性别、身高、体重 SB、LPA、MVPA和睡眠均与BMI(0) 8
    Rubín[10](2022)* 均值9岁,捷克共和国 88 腰戴,ActiGraph GT3X Evenson切点值 BF%、FMI、VAT 基线的因变量、性别和年龄 LPA、MPA和长、短以及总SB时间均与肥胖(0);中等SB时间与BF%(+);VPA与VAT(-) 12
    注: CPM为每分钟计数;VM为矢量活动计数;Z BMI为BMI Z分数;BF%为体脂率;FMI为体脂指数;VAT为内脏脂肪;“*”表示该文献为纵向追踪研究,“#”表示为随机对照试验的基线研究,未标注表示为横断面研究;Evevson切点值指Evenson等[28]验证的身体活动强度临界点;(+)正相关,(-)负相关,(0)无相关。
    下载: 导出CSV

    表  2  纳入研究基本特征与质量评估的成分等时替代

    Table  2.   Basic features and quality assessment of the included studies: compositional isotemporal substitution

    第一作者及年份 样本特征 样本量 加速度计 切点值 结局 替代方法(时间) 协变量 多元回归结果 得分
    Carson[12](2016) 6~17岁,加拿大 4 169/2 742 腰戴,Actical SB:< 100 CPM;LPA:100~1 499 CPM;MVPA:≥1 500 CPM;睡眠:自我报告 Z BMI、腰围 Chanstin替代(10 min) 年龄、性别和最高家庭教育水平 MVPA←SB/LPA/睡眠、睡眠←SB/LPA、LPA←SB,肥胖风险↓;SB←MVPA/LPA/睡眠,肥胖风险↑ 9
    Dumuid[14](2018) 9~11岁,4个国家 1 728 腰戴,ActiGraph GT3X+ SB:≤25次/15 s;LPA:26~573次/15 s;MVPA:≥574次/15 s;睡眠:算法 BF% “一对一”替代(30 min) 父母最高教育水平和父母、兄弟姐妹的数量 男女MVPA←SB/LPA/睡眠、男生睡眠←LPA、女生睡眠←LPA/SB,BF%↓;男女LPA←MVPA/SLP、男生SB←MVPA、女生SB←MVPA/睡眠,BF%↑ 12
    Fairclough[25](2018) 10~11岁,英国 318 腰戴,ActiGraph GT1M Evenson切点值 Z BMI、腰高比 “一对一”替代(10 min) 性别、社会经济地位 SB/LPA←MVPA,肥胖风险↑;MVPA←SB/LPA,肥胖风险↓ 8
    Fairclough[15](2017) 9~10岁,英国 169 腕戴,ActiGraph GT9X 以EMNMO定义:2 MET(ST/LPA);4 MET(MVPA);睡眠:算法 Z BMI、腰高比 “一对一”替代(15 min) 性别、年龄、社会经济地位 MVPA←SB/LPA/睡眠,肥胖风险↓;在超重/肥胖儿童中,MVPA时间再分配对肥胖产生的变化最大 9
    Gába[16](2021) 8~18岁,捷克共和国 336 腕戴,ActiGraph GT9X Link/wGT3X-BT 以VM定义,SB:< 306次/5 s;LPA:306~817次/5 s;MPA:818~1 968次/5 s;VPA:≥1 969次/5 s;睡眠:算法 BF%、FMI “一对一”替代(30,10,2 min) 年龄、地区、数据收集的季节 女生:30 min校外LPA←校外SB,BF%↓10.1,FMI ↓14;30 min校外SB←校外LPA,BF%↑13.5,FMI↑18;男生:特定情境的SB、MPA和VPA之间的时间再分配,肥胖指标(0) 9
    Gába[17](2020) 7~12岁,捷克共和国 425 腰戴,ActiGraph GT3X Evenson切点值 BF%、FMI、VAT “一对一”替代(1,2 h/周) 年龄、性别 MVPA←总SB,VAT↓;LPA/MVPA←总SB,BF%和FMI均(0);1 h/周MVPA←中等SB时间,BF%、FMI和VAT分别↓2.9,3.4和6.1。1 h/周短SB时间←中等SB时间,BF%↓3.5(2 h/周的替代影响方向同上,变化量则更大) 10
    Healy[18](2021) 7~19岁^,美国 28 腕戴,ActiGraph GT9X Link 以VM定义,SB:2 000 CPM;LPA:2 000~7 499 CPM;MPA:7 500 CPM;VPA:8 250 CPM;睡眠:算法 BMI “一对一”替代(30 min);“一对多”替代(60 min) 年龄、性别、种族 LPA←SB、MVPA和睡眠各20 min,BMI↑0.418;SB←LPA、MVPA和睡眠各20 min,BMI↑0.295;睡眠←SB、LPA和MVPA各20 min,BMI↓0.845。睡眠←LPA/MVPA,BMI分别↓0.471,0.658。MVPA←SB/LPA/睡眠,BMI(0) 10
    Štefelová[19](2018) 11.8~18.9岁,捷克共和国 420 ActiGraph GT3X Evenson切点值 Z BMI “一对一”替代(15 /30 /45 /60 min) 性别、年龄、体重、身高 VPA←15/30/45/60 min SB,ZBMI分别↓0.12,0.19,0.25和0.30 8
    Taylor[11](2019)# 6~10岁,新西兰 574 腰戴,ActiGraph GT3X Evenson切点值;睡眠:算法 Z BMI “一对多”替代(10%) 年龄、性别、剥夺指数、种族 10%(6.9 min)MVPA←其他、10%(57 min)←睡眠,Z BMI分别↓0.06和0.13;10(32 min)LPA←其他,Z BMI↓0.15;入睡前清醒时间(1.5 min)/SB(46 min)←其他,Z BMI(0) 10
    Dumuid[24](2019) 11~12岁,澳大利亚 938 腕戴,GENEActiv SB:244 gravity minutes;LPA:878 gravity minutes;MVPA:2 175 gravity minutes TF%、NTF%、FF% “一对一”替代(15 min);“一对多”替代(15 min) 性别、年龄、青春期状态、社会经济地位 MVPA←其他,TF%↓0.7,NTF%↓0.4,FF%↑1.1。MVPA←SB/LPA/睡眠,TF%↓-0.8/-0.8/-0.6,NTF%均↓-0.4,FF%↑1.2/1.2/1.0。睡眠、SB和LPA之间的替代与体成分的变化无关。 9
    Rubín[10](2022)* 均值9岁,捷克共和国 88 腰戴,ActiGraph GT3X Evenson切点值 BF%、FMI、VAT “一对一”替代(15 min/周、1 h/周、2 h/周) 基线的因变量、性别和年龄 15 min/周:VPA←总SB、短、中等以及长SB时间,VAT分别↓3.3,3.8,3.9和3.8 12
    注: CPM为每分钟计数;VM为矢量活动计数;Z BMI为BMI Z分数;BF%为体脂率;FMI为体脂指数;VAT为内脏脂肪;TF%为躯干脂肪率;NTF%为非躯干脂肪率;FF%为去脂质量百分比;EMNMO为欧几里得范数-1;Evevson切点值指Evenson等[28]验证的身体活动强度临界点;“*”表示该文献为纵向追踪研究,“#”表示为随机对照试验的基线研究,未标注表示为横断面研究;“^”表示研究对象为自闭症者,未标注为正常受试;gravity minutes为活动行为临界点加速度单位(特定)。
    下载: 导出CSV
  • [1] TREMBLAY M S, LEBLANC A G, KHO M E, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth[J]. Int J Behav Nutr Phys Act, 2011, 8: 98. doi: 10.1186/1479-5868-8-98
    [2] CARSON V, HUNTER S, KUZIK N, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update[J]. Appl Physiol Nutr Metab, 2016, 41(6 Suppl 3): S240-S265.
    [3] CHAPUT J P, LEDUC G, BOYER C, et al. Objectively measured physical activity, sedentary time and sleep duration: independent and combined associations with adiposity in Canadian children[J]. Nutr Diabetes, 2014, 4(6): e117. doi: 10.1038/nutd.2014.14
    [4] CHAPUT J P, SAUNDERS T J, CARSON V. Interactions between sleep, movement and other non-movement behaviours in the pathogenesis of childhood obesity[J]. Obes Rev, 2017, 18(Suppl 1): 7-14.
    [5] PEDISIC Z, DUMUID D, OLDS T S. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions[J]. Kinesiology, 2017, 49(2): 252-269.
    [6] ROLLO S, ANTSYGINA O, TREMBLAY M S. The whole day matters: understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan[J]. J Sport Health Sci, 2020, 9(6): 493-510. doi: 10.1016/j.jshs.2020.07.004
    [7] JANSSEN I, CLARKE A E, CARSON V, et al. A systematic review of compositional data analysis studies examining associations between sleep, sedentary behaviour, and physical activity with health outcomes in adults[J]. Appl Physiol Nutr Metab, 2020, 45(10 Suppl 2): S248-S257.
    [8] MOHER D, LIBERATI A, TETZLAFF J, et al. Preferred reporting items for systematic reviews and Meta-analyses: the PRISMA Statement[J]. Open Med, 2009, 3(3): e123-130.
    [9] MCMICHAN L, DICK M, SKELTON D A, et al. Sedentary behaviour and bone health in older adults: a systematic review[J]. Osteoporos Int, 2021, 32(8): 1487-1497. doi: 10.1007/s00198-021-05918-2
    [10] RUBÍN L, GABA A, PELCLOVA J, et al. Changes in sedentary behavior patterns during the transition from childhood to adolescence and their association with adiposity: a prospective study based on compositional data analysis[J]. Arch Public Health, 2022, 80(1): 1. doi: 10.1186/s13690-021-00755-5
    [11] TAYLOR R W, HASZARD J J, FARMER V L, et al. Do differences in compositional time use explain ethnic variation in the prevalence of obesity in children?Analyses using 24-hour accelerometry[J]. Int J Obes(Lond), 2020, 44(1): 94-103. doi: 10.1038/s41366-019-0377-1
    [12] CARSON V, TREMBLAY M S, CHAPUT J P, et al. Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses[J]. Appl Physiol Nutr Metab, 2016, 41(6 Suppl 3): S294-S302.
    [13] DUMUID D, STANFORD T E, MARTIN-FERNANDEZ J A, et al. Compositional data analysis for physical activity, sedentary time and sleep research[J]. Stat Methods Med Res, 2018, 27(12): 3726-3738. doi: 10.1177/0962280217710835
    [14] DUMUID D, STANFORD T E, PEDISIC Z, et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: a compositional data analysis approach[J]. BMC Public Health, 2018, 18(1): 311. doi: 10.1186/s12889-018-5207-1
    [15] FAIRCLOUGH S J, DUMUID D, TAYLOR S, et al. Fitness, fatness and the reallocation of time between children's daily movement behaviours: an analysis of compositional data[J]. Int J Behav Nutr Phys Act, 2017, 14(1): 64. doi: 10.1186/s12966-017-0521-z
    [16] GÁBA A, DYGRYN J, STEFELOVA N, et al. Replacing school and out-of-school sedentary behaviors with physical activity and its associations with adiposity in children and adolescents: a compositional isotemporal substitution analysis[J]. Environ Health Prev Med, 2021, 26(1): 16. doi: 10.1186/s12199-021-00932-6
    [17] GÁBA A, PEDISIC Z, STEFELOVA N, et al. Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis[J]. BMC Pediatr, 2020, 20(1): 147. doi: 10.1186/s12887-020-02036-6
    [18] HEALY S, BREWER B, GARCIA J, et al. Sweat, sit, sleep: a compositional analysis of 24-hour movement behaviors and body mass index among children with autism spectrum disorder[J]. Autism Res, 2021, 14(3): 545-550. doi: 10.1002/aur.2434
    [19] ŠTEFELOVÁ N, DYGRYN J, HRON K, et al. Robust compositional analysis of physical activity and sedentary behaviour data[J]. Int J Environ Res Public Health, 2018, 15(10): 2248. doi: 10.3390/ijerph15102248
    [20] TALARICO R, JANSSEN I. Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children[J]. Int J Obes(Lond), 2018, 42(8): 1508-1514. doi: 10.1038/s41366-018-0053-x
    [21] ZHANG T, LI H, LI C, et al. The compositional impacts of 2 distinct 24-hour movement behavior change patterns on physical fitness in Chinese adolescents[J]. J Phys Act Health, 2022, 19(4): 284-291. doi: 10.1123/jpah.2021-0778
    [22] 李东. 郑州新天地小学9~12岁儿童上学日活动行为与肥胖和血压的相关研究[D]. 武汉: 华中师范大学, 2020.

    LI D. Correlation of movement behaviors with obesity and blood pressure of 9-12-year-old children at Xintiandi primary school in Zhengzhou: compositional data analysis[D]. Wuhan: Central China Normal University, 2020. (in Chinese)
    [23] CARSON V, TREMBLAY M S, CHAPUT J P, et al. Compositional analyses of the associations between sedentary time, different intensities of physical activity, and cardiometabolic biomarkers among children and youth from the United States[J]. PLoS One, 2019, 14(7): e0220009. doi: 10.1371/journal.pone.0220009
    [24] DUMUID D, WAKE M, CLIFFORD S, et al. The association of the body composition of children with 24-hour activity composition[J]. J Pediatr, 2019, 208: 43-49. doi: 10.1016/j.jpeds.2018.12.030
    [25] FAIRCLOUGH S J, DUMUID D, MACKINTOSH K A, et al. Adiposity, fitness, health-related quality of life and the reallocation of time between children's school day activity behaviours: a compositional data analysis[J]. Prev Med Rep, 2018, 11: 254-261. doi: 10.1016/j.pmedr.2018.07.011
    [26] CHASTIN S F, PALAREA-ALBALADEJO J, DONTJE M L, et al. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach[J]. PLoS One, 2015, 10(10): e0139984. doi: 10.1371/journal.pone.0139984
    [27] DUMUID D, PEDISIC Z, STANFORD T E, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour[J]. Stat Methods Med Res, 2019, 28(3): 846-857. doi: 10.1177/0962280217737805
    [28] EVENSON K R, CATELLIER D J, GILL K, et al. Calibration of two objective measures of physical activity for children[J]. J Sports Sci, 2008, 26(14): 1557-1565. doi: 10.1080/02640410802334196
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  306
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-06-20
  • 网络出版日期:  2023-02-06
  • 刊出日期:  2023-01-25

目录

    /

    返回文章
    返回