A systematic review of the association between 24-hour movement behavior and obesity in children and adolescents
-
摘要:
目的 针对基于成分数据分析的研究,系统评价身体活动(physical activity, PA)、久坐行为(sedentary behavior, SB)和睡眠与肥胖的关联或等时替代效应,为儿童青少年肥胖干预提供参考。 方法 在中国知网、万方数据库、PubMed、SPORTDiscus、Web of Science和Medline数据库检索发表于2014年1月1日至2022年5月1日的相关研究。2名有经验的评价员独立完成文献的筛选、数据提取以及质量评估。 结果 共纳入文献16篇,文献质量得分范围为7~12分。中高强度身体活动(moderate to vigorous physical activity, MVPA)、睡眠与肥胖均呈负相关,且MVPA替代其他行为可降低肥胖风险,替代时间为1.5~60 min/d。低强度身体活动(light physical activity, LPA)、SB与肥胖均呈正相关(P值均 < 0.05)。 结论 MVPA是儿童青少年肥胖干预的主要着眼点,在现有身体活动水平的基础上,每周增加60 min的MVPA可能是降低肥胖风险的最小量。 Abstract:Objective To systematically review the associations of physical activity (PA), sedentary behavior (SB) and sleep with obesity, as well as isotemporal substitution effects among behaviors, determined with compositional data analysis methods, to provide a reference for obesity interventions among children and adolescents. Methods Studies in the CNKI, Wanfang, PubMed, SPORTDiscus, Web of Science and Medline databases were searched from January 1, 2014 to May 1, 2022. Two experienced reviewers independently completed document screening, data extraction and quality assessment. Results Sixteen articles were included, with a methodological quality score range of 7-12 points. Moderate to vigorous physical activity (MVPA), sleep and obesity were negatively correlated, and substituting other behaviors with MVPA decreased obesity risk. The substitution time ranged from 1.5 min/day to 60 min/day. Light physical activity(LPA) and SB were positively correlated with obesity. Conclusion MVPA is the primary focus of obesity interventions in children and adolescents, and extra 60 min of MVPA per week on the existing level of physical activity may be the minimum necessary to decrease the risk of obesity. -
Key words:
- Motor activity /
- Obesity /
- Child /
- Adolescent /
- Compositional data analysis
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 纳入研究基本特征与质量评估的成分多元回归分析
Table 1. Basic features and quality assessment of the included studies: compositional multiple regression
第一作者及年份 样本特征 样本量 加速度计 切点值 结局 协变量 多元回归结果 得分 Carson[12](2016) 6~17岁,加拿大 4 169/2 742 腰戴,Actical SB:< 100 CPM;LPA:100~1 499 CPM;MVPA:≥1 500 CPM;睡眠:自我报告 Z BMI、腰围 年龄、性别和最高家庭教育水平 SB、LPA与肥胖(+),MVPA、睡眠与之(-) 9 Dumuid[13](2018) 9~11岁,12个国家 5 828 腰戴,ActiGraph GT3X+ SB:≤25次/15 s;LPA:26~573次/15 s;MVPA:≥574次/15 s;睡眠:算法 Z BMI 性别、父母最高教育水平、父母和兄弟姐妹数量、研究地点 SB、LPA与ZBMI(+),睡眠、MVPA与之(-) 9 Gába[16] (2021) 8~18岁,捷克共和国 336 腕戴,ActiGraph GT9X Link或wGT3X-BT 以VM定义,SB:< 306次/5 s;LPA:306~817次/5 s;MPA:818~1 968次/5 s;VPA:≥1 969次/5 s;睡眠:算法 BF%、FMI 年龄、地区、季节 男女校外SB与BF%、FMI(+);女生校外LPA与BF%(-);校内SB、校内LPA、校内外MPA和VPA以及睡眠与肥胖(0) 9 Gába[17] (2020) 7~12岁,捷克共和国 425 腰戴,ActiGraph GT3X Evenson切点值 BF%、FMI、VAT 年龄、性别 中等SB时间(10~29 min)与BF%和VAT(+);MVPA与BF%、FMI和VAT(-);总SB时间、短SB时间(< 10 min)和长SB时间(≥30 min)与肥胖(0) 10 Štefelová[19](2018) 11.8~18.9岁,捷克共和国 420 ActiGraph GT3X Evenson切点值 Z BMI 性别、年龄、体重、身高 SB与Z BMI(+);VPA与之(-);LPA、MPA与Z BMI(0) 8 Talarico[20](2018) 10~13岁,加拿大 434 腰戴,Actical SB:< 100 CPM;LPA:100~1 499 CPM;MVPA:>1 499 CPM;睡眠:日志 Z BMI、腰围、FMI 年龄、性别、成熟度、数据收集季节、佩戴时间、屏前零食频率 MVPA与肥胖(-);LPA与肥胖指标(+);SB和睡眠与肥胖(0) 7 Carson[23](2019) 6~17岁,美国 2 544 腰戴,单轴ActiGraph 7164 SB:< 100 CPM;LPA:100 CPM~ < 4 METs;MPA:4~ < 7 METs;VPA:≥7 METs Z BMI、腰围 年龄、性别、种族/民族、社会经济地位、吸烟、总能量摄入、钠、饱和脂肪 VPA与Z BMI和腰围(-);SB与腰围(+);LPA、MPA与肥胖(0) 7 Taylor[11](2019)# 6~10岁,新西兰 574 腰戴,ActiGraph GT3X Evenson切点值;睡眠:算法 Z BMI 年龄、性别、剥夺指数、种族 睡眠、MVPA与Z BMI(-);LPA与Z BMI(+);SB与Z BMI(0) 10 李东[22] (2020) 9~12岁,中国 80 腰戴,ActiGraph GT3X Evenson切点值 BMI、BF%、腰高比、腰臀比 年龄(不确定) 男女生MVPA与BF%、腰高比和腰臀比(-);男生SB与腰臀比(+),女生SB与BF%(+);男生LPA与BF%(+),女生LPA与BMI(-);男生睡眠与肥胖(0),女生睡眠与腰臀比、腰高比(+);男生4种活动行为均与BMI(0) 7 Zhang[21](2022) 11~14岁,中国 241 腰戴,ActiGraph GT3X Evenson切点值;睡眠:24 h减去清醒时间 BMI 年龄、性别、身高、体重 SB、LPA、MVPA和睡眠均与BMI(0) 8 Rubín[10](2022)* 均值9岁,捷克共和国 88 腰戴,ActiGraph GT3X Evenson切点值 BF%、FMI、VAT 基线的因变量、性别和年龄 LPA、MPA和长、短以及总SB时间均与肥胖(0);中等SB时间与BF%(+);VPA与VAT(-) 12 注: CPM为每分钟计数;VM为矢量活动计数;Z BMI为BMI Z分数;BF%为体脂率;FMI为体脂指数;VAT为内脏脂肪;“*”表示该文献为纵向追踪研究,“#”表示为随机对照试验的基线研究,未标注表示为横断面研究;Evevson切点值指Evenson等[28]验证的身体活动强度临界点;(+)正相关,(-)负相关,(0)无相关。 表 2 纳入研究基本特征与质量评估的成分等时替代
Table 2. Basic features and quality assessment of the included studies: compositional isotemporal substitution
第一作者及年份 样本特征 样本量 加速度计 切点值 结局 替代方法(时间) 协变量 多元回归结果 得分 Carson[12](2016) 6~17岁,加拿大 4 169/2 742 腰戴,Actical SB:< 100 CPM;LPA:100~1 499 CPM;MVPA:≥1 500 CPM;睡眠:自我报告 Z BMI、腰围 Chanstin替代(10 min) 年龄、性别和最高家庭教育水平 MVPA←SB/LPA/睡眠、睡眠←SB/LPA、LPA←SB,肥胖风险↓;SB←MVPA/LPA/睡眠,肥胖风险↑ 9 Dumuid[14](2018) 9~11岁,4个国家 1 728 腰戴,ActiGraph GT3X+ SB:≤25次/15 s;LPA:26~573次/15 s;MVPA:≥574次/15 s;睡眠:算法 BF% “一对一”替代(30 min) 父母最高教育水平和父母、兄弟姐妹的数量 男女MVPA←SB/LPA/睡眠、男生睡眠←LPA、女生睡眠←LPA/SB,BF%↓;男女LPA←MVPA/SLP、男生SB←MVPA、女生SB←MVPA/睡眠,BF%↑ 12 Fairclough[25](2018) 10~11岁,英国 318 腰戴,ActiGraph GT1M Evenson切点值 Z BMI、腰高比 “一对一”替代(10 min) 性别、社会经济地位 SB/LPA←MVPA,肥胖风险↑;MVPA←SB/LPA,肥胖风险↓ 8 Fairclough[15](2017) 9~10岁,英国 169 腕戴,ActiGraph GT9X 以EMNMO定义:2 MET(ST/LPA);4 MET(MVPA);睡眠:算法 Z BMI、腰高比 “一对一”替代(15 min) 性别、年龄、社会经济地位 MVPA←SB/LPA/睡眠,肥胖风险↓;在超重/肥胖儿童中,MVPA时间再分配对肥胖产生的变化最大 9 Gába[16](2021) 8~18岁,捷克共和国 336 腕戴,ActiGraph GT9X Link/wGT3X-BT 以VM定义,SB:< 306次/5 s;LPA:306~817次/5 s;MPA:818~1 968次/5 s;VPA:≥1 969次/5 s;睡眠:算法 BF%、FMI “一对一”替代(30,10,2 min) 年龄、地区、数据收集的季节 女生:30 min校外LPA←校外SB,BF%↓10.1,FMI ↓14;30 min校外SB←校外LPA,BF%↑13.5,FMI↑18;男生:特定情境的SB、MPA和VPA之间的时间再分配,肥胖指标(0) 9 Gába[17](2020) 7~12岁,捷克共和国 425 腰戴,ActiGraph GT3X Evenson切点值 BF%、FMI、VAT “一对一”替代(1,2 h/周) 年龄、性别 MVPA←总SB,VAT↓;LPA/MVPA←总SB,BF%和FMI均(0);1 h/周MVPA←中等SB时间,BF%、FMI和VAT分别↓2.9,3.4和6.1。1 h/周短SB时间←中等SB时间,BF%↓3.5(2 h/周的替代影响方向同上,变化量则更大) 10 Healy[18](2021) 7~19岁^,美国 28 腕戴,ActiGraph GT9X Link 以VM定义,SB:2 000 CPM;LPA:2 000~7 499 CPM;MPA:7 500 CPM;VPA:8 250 CPM;睡眠:算法 BMI “一对一”替代(30 min);“一对多”替代(60 min) 年龄、性别、种族 LPA←SB、MVPA和睡眠各20 min,BMI↑0.418;SB←LPA、MVPA和睡眠各20 min,BMI↑0.295;睡眠←SB、LPA和MVPA各20 min,BMI↓0.845。睡眠←LPA/MVPA,BMI分别↓0.471,0.658。MVPA←SB/LPA/睡眠,BMI(0) 10 Štefelová[19](2018) 11.8~18.9岁,捷克共和国 420 ActiGraph GT3X Evenson切点值 Z BMI “一对一”替代(15 /30 /45 /60 min) 性别、年龄、体重、身高 VPA←15/30/45/60 min SB,ZBMI分别↓0.12,0.19,0.25和0.30 8 Taylor[11](2019)# 6~10岁,新西兰 574 腰戴,ActiGraph GT3X Evenson切点值;睡眠:算法 Z BMI “一对多”替代(10%) 年龄、性别、剥夺指数、种族 10%(6.9 min)MVPA←其他、10%(57 min)←睡眠,Z BMI分别↓0.06和0.13;10(32 min)LPA←其他,Z BMI↓0.15;入睡前清醒时间(1.5 min)/SB(46 min)←其他,Z BMI(0) 10 Dumuid[24](2019) 11~12岁,澳大利亚 938 腕戴,GENEActiv SB:244 gravity minutes;LPA:878 gravity minutes;MVPA:2 175 gravity minutes TF%、NTF%、FF% “一对一”替代(15 min);“一对多”替代(15 min) 性别、年龄、青春期状态、社会经济地位 MVPA←其他,TF%↓0.7,NTF%↓0.4,FF%↑1.1。MVPA←SB/LPA/睡眠,TF%↓-0.8/-0.8/-0.6,NTF%均↓-0.4,FF%↑1.2/1.2/1.0。睡眠、SB和LPA之间的替代与体成分的变化无关。 9 Rubín[10](2022)* 均值9岁,捷克共和国 88 腰戴,ActiGraph GT3X Evenson切点值 BF%、FMI、VAT “一对一”替代(15 min/周、1 h/周、2 h/周) 基线的因变量、性别和年龄 15 min/周:VPA←总SB、短、中等以及长SB时间,VAT分别↓3.3,3.8,3.9和3.8 12 注: CPM为每分钟计数;VM为矢量活动计数;Z BMI为BMI Z分数;BF%为体脂率;FMI为体脂指数;VAT为内脏脂肪;TF%为躯干脂肪率;NTF%为非躯干脂肪率;FF%为去脂质量百分比;EMNMO为欧几里得范数-1;Evevson切点值指Evenson等[28]验证的身体活动强度临界点;“*”表示该文献为纵向追踪研究,“#”表示为随机对照试验的基线研究,未标注表示为横断面研究;“^”表示研究对象为自闭症者,未标注为正常受试;gravity minutes为活动行为临界点加速度单位(特定)。 -
[1] TREMBLAY M S, LEBLANC A G, KHO M E, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth[J]. Int J Behav Nutr Phys Act, 2011, 8: 98. doi: 10.1186/1479-5868-8-98 [2] CARSON V, HUNTER S, KUZIK N, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update[J]. Appl Physiol Nutr Metab, 2016, 41(6 Suppl 3): S240-S265. [3] CHAPUT J P, LEDUC G, BOYER C, et al. Objectively measured physical activity, sedentary time and sleep duration: independent and combined associations with adiposity in Canadian children[J]. Nutr Diabetes, 2014, 4(6): e117. doi: 10.1038/nutd.2014.14 [4] CHAPUT J P, SAUNDERS T J, CARSON V. Interactions between sleep, movement and other non-movement behaviours in the pathogenesis of childhood obesity[J]. Obes Rev, 2017, 18(Suppl 1): 7-14. [5] PEDISIC Z, DUMUID D, OLDS T S. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions[J]. Kinesiology, 2017, 49(2): 252-269. [6] ROLLO S, ANTSYGINA O, TREMBLAY M S. The whole day matters: understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan[J]. J Sport Health Sci, 2020, 9(6): 493-510. doi: 10.1016/j.jshs.2020.07.004 [7] JANSSEN I, CLARKE A E, CARSON V, et al. A systematic review of compositional data analysis studies examining associations between sleep, sedentary behaviour, and physical activity with health outcomes in adults[J]. Appl Physiol Nutr Metab, 2020, 45(10 Suppl 2): S248-S257. [8] MOHER D, LIBERATI A, TETZLAFF J, et al. Preferred reporting items for systematic reviews and Meta-analyses: the PRISMA Statement[J]. Open Med, 2009, 3(3): e123-130. [9] MCMICHAN L, DICK M, SKELTON D A, et al. Sedentary behaviour and bone health in older adults: a systematic review[J]. Osteoporos Int, 2021, 32(8): 1487-1497. doi: 10.1007/s00198-021-05918-2 [10] RUBÍN L, GABA A, PELCLOVA J, et al. Changes in sedentary behavior patterns during the transition from childhood to adolescence and their association with adiposity: a prospective study based on compositional data analysis[J]. Arch Public Health, 2022, 80(1): 1. doi: 10.1186/s13690-021-00755-5 [11] TAYLOR R W, HASZARD J J, FARMER V L, et al. Do differences in compositional time use explain ethnic variation in the prevalence of obesity in children?Analyses using 24-hour accelerometry[J]. Int J Obes(Lond), 2020, 44(1): 94-103. doi: 10.1038/s41366-019-0377-1 [12] CARSON V, TREMBLAY M S, CHAPUT J P, et al. Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses[J]. Appl Physiol Nutr Metab, 2016, 41(6 Suppl 3): S294-S302. [13] DUMUID D, STANFORD T E, MARTIN-FERNANDEZ J A, et al. Compositional data analysis for physical activity, sedentary time and sleep research[J]. Stat Methods Med Res, 2018, 27(12): 3726-3738. doi: 10.1177/0962280217710835 [14] DUMUID D, STANFORD T E, PEDISIC Z, et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: a compositional data analysis approach[J]. BMC Public Health, 2018, 18(1): 311. doi: 10.1186/s12889-018-5207-1 [15] FAIRCLOUGH S J, DUMUID D, TAYLOR S, et al. Fitness, fatness and the reallocation of time between children's daily movement behaviours: an analysis of compositional data[J]. Int J Behav Nutr Phys Act, 2017, 14(1): 64. doi: 10.1186/s12966-017-0521-z [16] GÁBA A, DYGRYN J, STEFELOVA N, et al. Replacing school and out-of-school sedentary behaviors with physical activity and its associations with adiposity in children and adolescents: a compositional isotemporal substitution analysis[J]. Environ Health Prev Med, 2021, 26(1): 16. doi: 10.1186/s12199-021-00932-6 [17] GÁBA A, PEDISIC Z, STEFELOVA N, et al. Sedentary behavior patterns and adiposity in children: a study based on compositional data analysis[J]. BMC Pediatr, 2020, 20(1): 147. doi: 10.1186/s12887-020-02036-6 [18] HEALY S, BREWER B, GARCIA J, et al. Sweat, sit, sleep: a compositional analysis of 24-hour movement behaviors and body mass index among children with autism spectrum disorder[J]. Autism Res, 2021, 14(3): 545-550. doi: 10.1002/aur.2434 [19] ŠTEFELOVÁ N, DYGRYN J, HRON K, et al. Robust compositional analysis of physical activity and sedentary behaviour data[J]. Int J Environ Res Public Health, 2018, 15(10): 2248. doi: 10.3390/ijerph15102248 [20] TALARICO R, JANSSEN I. Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children[J]. Int J Obes(Lond), 2018, 42(8): 1508-1514. doi: 10.1038/s41366-018-0053-x [21] ZHANG T, LI H, LI C, et al. The compositional impacts of 2 distinct 24-hour movement behavior change patterns on physical fitness in Chinese adolescents[J]. J Phys Act Health, 2022, 19(4): 284-291. doi: 10.1123/jpah.2021-0778 [22] 李东. 郑州新天地小学9~12岁儿童上学日活动行为与肥胖和血压的相关研究[D]. 武汉: 华中师范大学, 2020.LI D. Correlation of movement behaviors with obesity and blood pressure of 9-12-year-old children at Xintiandi primary school in Zhengzhou: compositional data analysis[D]. Wuhan: Central China Normal University, 2020. (in Chinese) [23] CARSON V, TREMBLAY M S, CHAPUT J P, et al. Compositional analyses of the associations between sedentary time, different intensities of physical activity, and cardiometabolic biomarkers among children and youth from the United States[J]. PLoS One, 2019, 14(7): e0220009. doi: 10.1371/journal.pone.0220009 [24] DUMUID D, WAKE M, CLIFFORD S, et al. The association of the body composition of children with 24-hour activity composition[J]. J Pediatr, 2019, 208: 43-49. doi: 10.1016/j.jpeds.2018.12.030 [25] FAIRCLOUGH S J, DUMUID D, MACKINTOSH K A, et al. Adiposity, fitness, health-related quality of life and the reallocation of time between children's school day activity behaviours: a compositional data analysis[J]. Prev Med Rep, 2018, 11: 254-261. doi: 10.1016/j.pmedr.2018.07.011 [26] CHASTIN S F, PALAREA-ALBALADEJO J, DONTJE M L, et al. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach[J]. PLoS One, 2015, 10(10): e0139984. doi: 10.1371/journal.pone.0139984 [27] DUMUID D, PEDISIC Z, STANFORD T E, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour[J]. Stat Methods Med Res, 2019, 28(3): 846-857. doi: 10.1177/0962280217737805 [28] EVENSON K R, CATELLIER D J, GILL K, et al. Calibration of two objective measures of physical activity for children[J]. J Sports Sci, 2008, 26(14): 1557-1565. doi: 10.1080/02640410802334196 -