Relationship of problematic social networks use, online social anxiety and depressive symptoms in college students
-
摘要:
目的 识别大学生问题性社交网络使用的潜在类别,并进一步分析其不同类别与线上社交焦虑和抑郁症状的关联,为制定促进大学生合理使用社交网络的预防措施提供参考。 方法 于2021年5—6月,采用方便整群抽样方法选取辽宁省沈阳市3所高校1 082名在校大学生,采用问题性移动社交网络使用问卷(PMSMUAQ)、线上社交焦虑量表(SAS-SMU)和流调中心抑郁量表(CES-D)进行问卷调查,并采用潜在剖面分析及稳健三步法对数据进行分析。 结果 大学生问题性社交网络使用分为适度使用组(31.98%,346名)、轻度依赖组(49.26%,533名)和深度沉迷组(18.76%,203名)3个潜在类别。多项式Logistic回归分析显示,城市学生在深度沉迷组所占比例更大(OR=1.62,P < 0.05);随着每天上网时间的增加,轻度依赖组和深度沉迷组的发生比例上升(OR值分别为1.11,1.20,P值均 < 0.01)。不同问题性社交网络使用类型大学生线上社交焦虑和抑郁症状检出率差异有统计学意义(χ2值分别为188.70,62.60,P值均 < 0.01),深度沉迷组在线上社交焦虑和抑郁症状上得分更高。 结论 大学生问题性社交网络使用存在异质性。为减少线上社交焦虑和抑郁症状的出现,高校教育者和家长应多关注问题性社交网络使用水平较高的学生。 Abstract:Objective To identify potential categories of problematic social networks use for college students and further analyze the association of different categories with online social anxiety and depressive symptoms, and to provide reference for formulating preventive measures to promote college students' rational use of social networks. Methods From May to June 2021, 1 082 college students from 3 universities in Shenyang, Liaoning Province were selected by convenient sampling. Students completed the Problematic Mobile Social Media Usage Assessment Questionnaire(PMSMUAQ), the Social Anxiety Scale for Social Media Users (SAS-SMU) and Center for Epidemiologic Studies Depression Scale (CES-D), the latent profile analysis (LPA) and R3STEP were used to analyze the data. Results College students' problematic social network use was divided into three potential categories: moderate use group (31.98%, 346), mild dependence group (49.26%, 533), and deep addiction group (18.76%, 203). Logistic regression analysis showed that urban students had a greater proportion in the deeply addicted group (OR=1.62, P < 0.05). The incidence ratios of the mildly dependent and deeply addicted groups gradually increased as daily time spent online increased (OR=1.11, 1.20, P < 0.01). There were significant differences in online social anxiety and depressive symptoms among college students with different problematic social network use types(χ2=188.70, 62.60, P < 0.01), and the deeply addicted group scored higher on online social anxiety and depressive symptoms. Conclusion There is heterogeneity in problematic social network use among college students. And to reduce the emergence of online social anxiety and depressive symptoms, college educators and parents should pay more attention to students with higher levels of problematic social network use. -
Key words:
- Internet /
- Anxiety /
- Depression /
- Mental health /
- Regression analysis /
- Students
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 大学生问题性社交网络使用的潜在剖面分析拟合指数(n=1 082)
Table 1. Potential profile analysis fit indices of problematic social networks among college students(n=1 082)
模型 Log(L)值 AIC值 BIC值 aBIC值 Entropy值 PLMRT值 PBLRT值 类别概率 1 -36 823.53 73 727.07 73 926.98 73 799.93 - - - - 2 -33 578.95 67 279.90 67 584.75 67 391.01 0.93 < 0.01 < 0.01 0.46/0.54 3 -32 597.96 65 359.93 65 769.74 65 509.28 0.91 < 0.01 < 0.01 0.32/0.49/0.19 4 -32 188.74 64 583.48 65 098.23 64 771.08 0.89 0.07 < 0.01 0.22/0.35/0.34/0.09 5 -31 908.30 64 064.60 64 684.30 64 290.45 0.88 0.15 < 0.01 0.22/0.14/0.24/0.08/0.32 表 2 大学生问题性社交网络使用潜类别影响因素的Logistic回归分析(n=1 082)
Table 2. Logistic regression analysis of factors influencing potential categories of problematic social network use among college students (n=1 082)
自变量 选项 轻度依赖组 深度沉迷组 β值 标准误 t值 P值 β值 标准误 t值 P值 性别 女 0.06 0.17 0.34 0.73 0.37 0.23 1.60 0.11 是否独生子女 否 0.04 0.15 0.30 0.77 -0.19 0.19 -1.02 0.31 生源地 城市 0.05 0.16 0.31 0.76 0.48 0.19 2.51 0.01 留守经历 无 -0.09 0.14 -0.66 0.51 0.13 0.14 0.94 0.35 年级 0.10 0.09 1.16 0.25 0.21 0.11 1.88 0.06 年龄 -0.04 0.05 -0.79 0.43 0.02 0.05 0.44 0.66 每天上网时间 0.10 0.03 3.67 < 0.01 0.18 0.03 5.55 < 0.01 注:自变量分别以男生、独生子女、生源地为农村、有留守经历、大一年级为参照组,年龄、每天上网时间为连续型变量。 -
[1] KIM Y, WANG Y, OH J. Digital media use and social engagement: how social media and smartphone use influence social activities of college students[J]. Cyberpsychol Behav Soc Netw, 2016, 19(4): 264-269. doi: 10.1089/cyber.2015.0408 [2] 姜永志, 白晓丽, 阿拉坦巴根, 等. 青少年问题性社交网络使用[J]. 心理科学进展, 2016, 24(9): 1435-1447. https://www.cnki.com.cn/Article/CJFDTOTAL-XLXD201609012.htmJIANG Y Z, BAI X L, A LATANBAGEN, et al. Problematic social networks usage of adolescent[J]. Adv Psychol Sci, 2016, 24(9): 1435-1447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XLXD201609012.htm [3] JOLLIFF A F, MORENO M A, D'ANGELO J. The mediating role of depressive and anxiety symptoms in the association between obesity and problematic social media use in young adults[J]. Obes Sci Pract, 2020, 6(5): 454-459. doi: 10.1002/osp4.434 [4] MESHI D, ELLITHORPE M E. Problematic social media use and social support received in real-life versus on social media: associations with depression, anxiety and social isolation[J]. Addict Behav, 2021, 119: 106949. doi: 10.1016/j.addbeh.2021.106949 [5] 陈必忠, 张瑞敏, 张绮琳, 等. 社交媒体用户社交焦虑量表在中国大学生中的初步应用[J]. 中国临床心理学杂志, 2020, 28(6): 1190-1193, 1198. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202006023.htmCHEN B Z, ZHANG R M, ZHANG Q L, et al. Reliability and validity of the Social Anxiety Scale for Social Media Users(SAS-SMU) in Chinese university students[J]. Chin J Clin Psychol, 2020, 28(6): 1190-1193, 1198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLCY202006023.htm [6] 姜永志, 张斌, 李笑燃. 基于安戈夫法的青少年问题性移动社交网络使用评估标准[J]. 心理科学, 2019, 42(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XLKX201901012.htmJIANG Y Z, ZHANG B, LI X R. Evaluation of adolescent problematic mobile social network usage based on Angoff Method[J]. J Psychol Sci, 2019, 42(1): 75-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XLKX201901012.htm [7] 张馨予, 孙琦, 周广东, 等. 大学生进食障碍症状的潜在剖面分析及其与抑郁的关系[J]. 心理与行为研究, 2022, 20(1): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-CLXW202201011.htmZHANG X Y, SUN Q, ZHOU G D, et al. A latent profile analysis to symptoms of eating disorder in college students and its relation to depression[J]. Stud Psychol Behav, 2022, 20(1): 73-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLXW202201011.htm [8] 邹维兴, 谢玲平, 王洪礼. 亲子依恋与留守儿童攻击性行为的关系: 基于潜在剖面的分析[J]. 中国健康心理学杂志, 2022, 30(5): 703-708. https://www.cnki.com.cn/Article/CJFDTOTAL-JKXL202205014.htmZOU W X, XIE L P, WANG H L. Relationship between parent-child attchment and aggressive behavior of left-behind children: an application of latent profile analysis[J]. Chin J Health Psychol, 2022, 30(5): 703-708. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JKXL202205014.htm [9] 姜永志. 青少年问题性移动社交媒体使用评估问卷编制[J]. 心理技术与应用, 2018, 6(10): 613-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XLJS201810018.htmJIANG Y Z. Development of Problematic Mobile Social Media Usage Assessment Questionnaire for Adolescents[J]. Psychol Tech Appl, 2018, 6(10): 613-621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XLJS201810018.htm [10] 章婕, 吴振云, 方格, 等. 流调中心抑郁量表全国城市常模的建立[J]. 中国心理卫生杂志, 2010, 24(2): 139-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXWS201002019.htmZHANG J, WU Z Y, FANG G, et al. Development of the Chinese age norms of CES-D in urban area[J]. Chin Ment Health J, 2010, 24(2): 139-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXWS201002019.htm [11] 汤丹丹, 温忠麟. 共同方法偏差检验: 问题与建议[J]. 心理科学, 2020, 43(1): 215-223. https://www.cnki.com.cn/Article/CJFDTOTAL-XLKX202001030.htmTANG D D, WEN Z L. Statistical approaches for testing common method bias: problems and suggestions[J]. J Psychol Sci, 2020, 43(1): 215-223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XLKX202001030.htm [12] NYLUND K L, ASPAROUHOV T, MUTHéN B O. Deciding on the number of classes in latent class analysis and growth mixture modeling: a monte-carlo simulation study[J]. Struct Equ Model, 2007, 14(4): 535-569. [13] GRIFFITHS M D, KUSS D J, DEMETROVICS Z. Social networking addiction: an overview of preliminary findings[J]. Behav Addict, 2014: 119-141. [14] KARDEFELT-WINTHER D. A conceptual and methodological critique of internet addiction research: towards a model of compensatory internet use[J]. Comput Human Behav, 2014, 31: 351-354. [15] CHEN C, ZHANG K Z K, GONG X, et al. Dual mechanisms of reinforcement reward and habit in driving smartphone addiction: the role of smartphone features[J]. Int Res, 2019, 29(6): 1551-1570. [16] STAVROPOULOS V, ALEXANDRAKI K, MOTTI-STEFANIDI F. Recognizing internet addiction: prevalence and relationship to academic achievement in adolescents enrolled in urban and rural Greek high schools[J]. J Adolesc, 2013, 36(3): 565-576. [17] XIN M, XING J, PENGFEI W, et al. Online activities, prevalence of Internet addiction and risk factors related to family and school among adolescents in China[J]. Addict Behav Rep, 2018, 7: 14-18. [18] 彭顺, 张湘一, 张红坡, 等. 负面评价恐惧与大学生网络过度使用的关系: 社交焦虑和自我控制的中介作用[J]. 心理科学, 2020, 43(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XLKX202001012.htmPENG S, ZHANG X Y, ZHANG H P, et al. The relationship between fear of negative evaluation and internet overuse: the mediating effects of social anxiety and self-control[J]. J Psychol Sci, 2020, 43(1): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XLKX202001012.htm [19] MALAEB D, SALAMEH P, BARBAR S, et al. Problematic social media use and mental health (depression, anxiety, and insomnia) among Lebanese adults: any mediating effect of stress?[J]. Perspect Psychiatr Care, 2021, 57(2): 539-549. [20] 陈云祥, 娄骥, 张鹏, 等. 大学生问题性社交网络使用的定性研究[J]. 中国心理卫生杂志, 2019, 33(2): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXWS201902015.htmCHEN Y X, LOU J, ZHANG P, et al. Qualitative research on problematic social networks usage in college students[J]. Chin Ment Health J, 2019, 33(2): 143-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXWS201902015.htm [21] CARRUTHERS S E, WARNOCK-PARKES E L, CLARK D M. Accessing social media: help or hindrance for people with social anxiety?[J]. J Exp Psychopathol, 2019, 10(2): 2043808719837811. [22] 才源源, 崔丽娟, 李昕. 青少年网络游戏行为的心理需求研究[J]. 心理科学, 2007, 30(1): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-XLKX200701042.htmCAI Y Y, CUI L J, LI X. A research on the psychological needs of teenagers' online game behaviors[J]. J Psychol Sci, 2007, 30(1): 169-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XLKX200701042.htm [23] 杨邦林, 林谷洋, 严由伟. 被动性社交网络使用对硕士生睡眠质量的影响: 一个有调节的中介模型[J]. 中国特殊教育, 2018(3): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDTJ201803014.htmYANG B L, LIN G Y, YAN Y W. The effect of the passive use of social networking sites on master's degree candidates' sleep quality: a mode of moderation-oriented mediation[J]. Chin J Spec Educ, 2018(3): 83-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDTJ201803014.htm -