留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

睡眠及昼夜节律与儿童青少年近视发生的关联

李丹琳 刘民歆 梁刚 潘臣炜

李丹琳, 刘民歆, 梁刚, 潘臣炜. 睡眠及昼夜节律与儿童青少年近视发生的关联[J]. 中国学校卫生, 2022, 43(9): 1428-1431. doi: 10.16835/j.cnki.1000-9817.2022.09.036
引用本文: 李丹琳, 刘民歆, 梁刚, 潘臣炜. 睡眠及昼夜节律与儿童青少年近视发生的关联[J]. 中国学校卫生, 2022, 43(9): 1428-1431. doi: 10.16835/j.cnki.1000-9817.2022.09.036
LI Danlin, LIU Minxin, LIANG Gang, PAN Chenwei. Association between sleep and circadian rhythms with the development of myopia in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2022, 43(9): 1428-1431. doi: 10.16835/j.cnki.1000-9817.2022.09.036
Citation: LI Danlin, LIU Minxin, LIANG Gang, PAN Chenwei. Association between sleep and circadian rhythms with the development of myopia in children and adolescents[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2022, 43(9): 1428-1431. doi: 10.16835/j.cnki.1000-9817.2022.09.036

睡眠及昼夜节律与儿童青少年近视发生的关联

doi: 10.16835/j.cnki.1000-9817.2022.09.036
基金项目: 

国家重点研发计划资助 2021YFC2702100

国家重点研发计划资助 2021YFC2702

详细信息
    作者简介:

    李丹琳(1994-),女,四川绵阳人,在读博士,主要研究方向为儿童青少年近视防控

    通讯作者:

    潘臣炜,E-mail:pcwonly@gmail.com

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R122 R179 R725.6

Association between sleep and circadian rhythms with the development of myopia in children and adolescents

  • 摘要: 儿童青少年近视率逐年上升,且呈低龄化趋势,影响了儿童青少年身心健康。睡眠问题在儿童青少年中也普遍存在,如睡眠时间减少、入睡时间延迟等。睡眠是一种周期性的生命活动,受昼夜节律的影响,此外,近视也与睡眠和昼夜节律密切相关。研究通过回顾与总结相关文献,从人群流行病学、动物模型研究综述了睡眠、昼夜节律与儿童青少年近视发生的关联,并探讨其中的生物学机制,为儿童青少年近视防控提供科学依据。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • [1] KLEIN D L, MOORE R Y, REPPERT S M. Suprachiasmatic Nucleus: the mind's clock[M]. New York: Oxford University Press, 1991.
    [2] ZEE P C, ABBOTT S M. Circadian rhythm sleep-wake disorders[J]. Continuum(Minneap Minn), 2020, 26(4): 988-1002.
    [3] ALBRECHT U. Timing to perfection: the biology of central and peripheral circadian clocks[J]. Neuron, 2012, 74(2): 246-260. doi: 10.1016/j.neuron.2012.04.006
    [4] LEGATES T A, FERNANDEZ D C, HATTAR S. Light as a central modulator of circadian rhythms, sleep and affect[J]. Nat Rev Neurosci, 2014, 15(7): 443-454.
    [5] ZELINSKI E L, DEIBEL S H, MCDONALD R J. The trouble with circadian clock dysfunction: multiple deleterious effects on the brain and body[J]. Neurosci Biobehav Rev, 2014, 40: 80-101. doi: 10.1016/j.neubiorev.2014.01.007
    [6] SPILLMANN L. Stopping the rise of myopia in Asia[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(5): 943-959. doi: 10.1007/s00417-019-04555-0
    [7] PAN C W, WU R K, WANG P, et al. Reduced vision, refractive errors and health-related quality of life among adolescents in rural China[J]. Clin Exp Optom, 2018, 101(6): 758-763. doi: 10.1111/cxo.12680
    [8] JEE D, MORGAN I G, KIM E C. Inverse relationship between sleep duration and myopia[J]. Acta Ophthalmol, 2016, 94(3): e204-e210. doi: 10.1111/aos.12776
    [9] 王悦, 郑康杰, 谢辉, 等. 宝山区青少年不同近视程度对睡眠质量的影响[J]. 中国学校卫生, 2021, 42(2): 190-194. doi: 10.16835/j.cnki.1000-9817.2021.02.008

    WANG Y, ZHENG K J, XIE H, et al. Impact of different myopia degree on sleep quality among adolescents in Baoshan District[J]. Chin J Sch health, 2021, 42(2): 190-194. doi: 10.16835/j.cnki.1000-9817.2021.02.008
    [10] QUINN G E, SHIN C H, MAGUIRE M G, et al. Myopia and ambient lighting at night[J]. Nature, 1999, 399(6732): 113-114. doi: 10.1038/20094
    [11] SAW S M, WU H M, HONG C Y, et al. Myopia and night lighting in children in Singapore[J]. Br J Ophthalmol, 2001, 85(5): 527-528. doi: 10.1136/bjo.85.5.527
    [12] GUGGENHEIM J A, HILL C, YAM T F. Myopia, genetics, and ambient lighting at night in a UK sample[J]. Br J Ophthalmol, 2003, 87(5): 580-582. doi: 10.1136/bjo.87.5.580
    [13] 林林, 满丰韬, 胡乃宝, 等. 青少年近视的危险因素研究[J]. 中国儿童保健杂志, 2013, 21(2): 206-209. https://www.cnki.com.cn/Article/CJFDTOTAL-ERTO201302040.htm

    LIN L, MAN F T, HU N B, et al. Study of relationship between sleep quality, obesity and juvenile myopia[J]. Chin J Child Health Care, 2013, 21(2): 206-209. https://www.cnki.com.cn/Article/CJFDTOTAL-ERTO201302040.htm
    [14] GONG Y, ZHANG X, TIAN P, et al. Parental myopia, near work, hours of sleep and myopia in Chinese children[J]. Health, 2014, 6(1): 64-70. doi: 10.4236/health.2014.61010
    [15] JEE D, MORGAN I G, KIM E C. Inverse relationship between sleep duration and myopia[J]. Acta ophthalmol, 2016, 94(3): e204-e210. doi: 10.1111/aos.12776
    [16] 许韶君, 万宇辉, 徐增辉, 等. 体育锻炼、睡眠和家庭作业时间与中小学生疑似近视的关系[J]. 中华流行病学杂志, 2016, 37(2): 183-186. doi: 10.3760/cma.j.issn.0254-6450.2016.02.006

    XU S J, WAN Y H, XU Z H, et al. Association between time spent on physical exercise, sleep, homework and suspected myopia among students[J]. Chin J Epidemiol, 2016, 37(2): 183-186. doi: 10.3760/cma.j.issn.0254-6450.2016.02.006
    [17] PAN C W, LIU J H, WU R K, et al. Disordered sleep and myopia among adolescents: a propensity score matching analysis[J]. Ophthalmic Epidemiol, 2019, 26(3): 155-160. doi: 10.1080/09286586.2018.1554159
    [18] KEARNEY S, O'DONOGHUE L, POURSHAHIDI L K, et al. Myopes have significantly higher serum melatonin concentrations than non-myopes[J]. Ophthalmic Physiol Opt, 2017, 37(5): 557-567. doi: 10.1111/opo.12396
    [19] KUMAR S, GUPTA N, VELPANDIAN T, et al. Myopia, melatonin and conjunctival ultraviolet autofluorescence: a comparative cross-sectional study in Indian myopes[J]. Curr Eye Res, 2021, 46(10): 1474-1481. doi: 10.1080/02713683.2021.1894580
    [20] JENSEN L S, MATSON W E. Enlargement of avian eye by subjecting chicks to continuous incandescent illumination[J]. Science, 1957, 125(3251): 741. doi: 10.1126/science.125.3251.741.b
    [21] LAUBER J K, SHUTZE J M J. Effects of exposure to continuous light on the eye of the growing chick[J]. Proc Soc Exp Biol Med, 1961, 106: 871-872. doi: 10.3181/00379727-106-26505
    [22] LAUBER J K, MCGINNIS J. Eye lesions in domestic fowl reared under continuous light[J]. Vision Res, 1966, 6(12): 619-626.
    [23] GOTTLIEB M D, FUGATE-WENTZEK L A, WALLMAN J. Different visual deprivations produce different ametropias and different eye shapes[J]. Invest Ophthalmol Vis Sci, 1987, 28(8): 1225-1235.
    [24] STONE R A, LIN T, DESAI D, et al. Photoperiod, early post-natal eye growth, and visual deprivation[J]. Vision Res, 1995, 35(9): 1195-1202. doi: 10.1016/0042-6989(94)00232-B
    [25] LI T, WAHL C, HOWLAND H C. Age dependent ocular changes of chicks under constant light, and recovery from them, in normal illumination[J]. Invest Ophthalmol Vis Sci, 2004, 452: U416.
    [26] ZHOU X, AN J, WU X, et al. Relative axial myopia induced by prolonged light exposure in C57BL/6 mice[J]. Photochem Photobiol, 2010, 86(1): 131-137. doi: 10.1111/j.1751-1097.2009.00637.x
    [27] SMITH E R, BRADLEY D V, FERNANDES A, et al. Continuous ambient lighting and eye growth in primates[J]. Invest Ophthalmol Vis Sci, 2001, 42(6): 1146-1152.
    [28] SMITH E R, HUNG L F, KEE C S, et al. Continuous ambient lighting and lens compensation in infant monkeys[J]. Optom Vis Sci, 2003, 80(5): 374-382. doi: 10.1097/00006324-200305000-00012
    [29] STONE R A, MCGLINN A M, CHAKRABORTY R, et al. Altered ocular parameters from circadian clock gene disruptions[J]. PLoS One, 2019, 14(6): e217111.
    [30] 吴涛, 倪银华, 夏李群, 等. 视网膜生物钟研究进展[J]. 现代生物医学进展, 2007, 7(8): 1249-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX200708053.htm

    WU T, NI Y H, XIA L Q, et al. Research progress on the biochronometer in the retina[J]. Prog Mod Biomed, 2007, 7(8): 1249-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX200708053.htm
    [31] CHAKRABORTY R, OSTRIN L A, NICKLA D L, et al. Circadian rhythms, refractive development, and myopia[J]. Ophthalmic Physiol Optics, 2018, 38(3): 217-245. doi: 10.1111/opo.12453
    [32] WEISS S, SCHAEFFEL F. Diurnal growth rhythms in the chicken eye: relation to myopia development and retinal dopamine levels[J]. J Comp Physiol A, 1993, 172(3): 263-270. doi: 10.1007/BF00216608
    [33] NICKLA D L, WILDSOET C, WALLMAN J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes[J]. Exp Eye Res, 1998, 66(2): 163-181. doi: 10.1006/exer.1997.0420
    [34] PAPASTERGIOU G I, SCHMID G F, RIVA C E, et al. Ocular axial length and choroidal thickness in newly hatched chicks and one-year-old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes[J]. Exp Eye Res, 1998, 66(2): 195-205. doi: 10.1006/exer.1997.0421
    [35] NICKLA D L, WILDSOET C F, TROILO D. Diurnal rhythms in intraocular pressure, axial length, and choroidal thickness in a primate model of eye growth, the common marmoset[J]. Invest Ophthalmol Vis Sci, 2002, 43(8): 2519-2528.
    [36] WILSON L B, QUINN G E, YING G S, et al. The relation of axial length and intraocular pressure fluctuations in human eyes[J]. Invest Ophthalmol Vis Sci, 2006, 47(5): 1778-1784. doi: 10.1167/iovs.05-0869
    [37] CHAKRABORTY R, READ S A, COLLINS M J. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5121-5129. doi: 10.1167/iovs.11-7364
    [38] DO M T, YAU K W. Intrinsically photosensitive retinal ganglion cells[J]. Physiol Rev, 2010, 90(4): 1547-1581. doi: 10.1152/physrev.00013.2010
    [39] BESHARSE J C, IUVONE P M. Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase[J]. Nature, 1983, 305(5930): 133-135. doi: 10.1038/305133a0
    [40] CAHILL G M, BESHARSE J C. Circadian clock functions localized in xenopus retinal photoreceptors[J]. Neuron, 1993, 10(4): 573-577. doi: 10.1016/0896-6273(93)90160-S
    [41] MCMAHON D G, IUVONE P M, TOSINI G. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases[J]. Prog Retin Eye Res, 2014, 39: 58-76. doi: 10.1016/j.preteyeres.2013.12.001
    [42] RUAN G X, GAMBLE K L, RISNER M L, et al. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators[J]. PLoS One, 2012, 7(6): e38985. doi: 10.1371/journal.pone.0038985
    [43] ZHOU X, PARDUE M T, IUVONE P M, et al. Dopamine signaling and myopia development: what are the key challenges[J]. Prog Retin Eye Res, 2017, 61: 60-71. doi: 10.1016/j.preteyeres.2017.06.003
    [44] KORSHUNOV K S, BLAKEMORE L J, TROMBLEY P Q. Dopamine: a modulator of circadian rhythms in the central nervous system[J]. Front Cell Neurosci, 2017, 11: 91.
    [45] HWANG C K, CHAURASIA S S, JACKSON C R, et al. Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells[J]. J Neurosci, 2013, 33(38): 14989-14997. doi: 10.1523/JNEUROSCI.2039-13.2013
    [46] KUNST S, WOLLOSCHECK T, KELLEHER D K, et al. Pgc-1alpha and Nr4a1 are target genes of circadian melatonin and dopamine release in murine retina[J]. Invest Ophthalmol Vis Sci, 2015, 56(10): 6084-6094. doi: 10.1167/iovs.15-17503
    [47] MUNTEANU T, NORONHA K J, LEUNG A C, et al. Light-dependent pathways for dopaminergic amacrine cell development and function[J]. Elife, 2018, 7: e3986.
    [48] RUAN G X, ALLEN G C, YAMAZAKI S, et al. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA[J]. PLoS Biol, 2008, 6(10): e249. doi: 10.1371/journal.pbio.0060249
    [49] JACKSON C R, CHAURASIA S S, HWANG C K, et al. Dopamine D(4) receptor activation controls circadian timing of the adenylyl cyclase 1/cyclic AMP signaling system in mouse retina[J]. Eur J Neurosci, 2011, 34(1): 57-64. doi: 10.1111/j.1460-9568.2011.07734.x
    [50] ZHANG Z, LI H, LIU X, et al. Circadian clock control of connexin 36 phosphorylation in retinal photoreceptors of the CBA/CaJ mouse strain[J]. Vis Neurosci, 2015, 32: E9.
    [51] YOSHIKAWA M, YAMASHIRO K, MIYAKE M, et al. Comprehensive replication of the relationshipbetween myopia-related genes and refractive errors in a large Japanese cohort[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7343-7354. doi: 10.1167/iovs.14-15105
    [52] FELDKAEMPER M, SCHAEFFEL F. An updated view on the role of dopamine in myopia[J]. Exp Eye Res, 2013, 114: 106-119. doi: 10.1016/j.exer.2013.02.007
    [53] CHAKRABORTY R, LEE D C, LANDIS E G, et al. Melanopsin knock-out mice have refractive development and increased susceptibility to form-deprivation myopia[J]. Invest Ophthalmol Vis Sci, 2015, 56(7): 5843.
    [54] OSTERGAARD J, HANNIBAL J, FAHRENKRUG J. Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells[J]. Invest Ophthalmol Vis Sci, 2007, 48(8): 3812-3820. doi: 10.1167/iovs.06-1322
    [55] PRIGGE C L, YEH P T, LIOU N F, et al. M1 ipRGCs influence visual function through retrograde signaling in the retina[J]. J Neurosci, 2016, 36(27): 7184-7197. doi: 10.1523/JNEUROSCI.3500-15.2016
    [56] SAKAMOTO K, LIU C, KASAMATSU M, et al. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells[J]. Eur J Neurosci, 2005, 22(12): 3129-3136. doi: 10.1111/j.1460-9568.2005.04512.x
    [57] BRAINARD G C, HANIFIN J P, GREESON J M, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor[J]. J Neurosci, 2001, 21(16): 6405-6412. doi: 10.1523/JNEUROSCI.21-16-06405.2001
    [58] WANG F, ZHOU J, LU Y, et al. Effects of 530 nm green light on refractive status, melatonin, MT1 receptor, and melanopsin in the guinea pig[J]. Curr Eye Res, 2011, 36(2): 103-111. doi: 10.3109/02713683.2010.526750
    [59] KEARNEY S, O'DONOGHUE L, POURSHAHIDI L K, et al. Myopes have significantly higher serum melatonin concentrations than non-myopes[J]. Ophthalmic Physiol Opt, 2017, 37(5): 557-567. doi: 10.1111/opo.12396
    [60] STONE R A, PARDUE M T, IUVONE P M, et al. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms[J]. Exp Eye Res, 2013, 114: 35-47. doi: 10.1016/j.exer.2013.01.001
  • 加载中
计量
  • 文章访问数:  401
  • HTML全文浏览量:  201
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-02-02
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-09-25

目录

    /

    返回文章
    返回