Relationship between body fat distribution and bone mineral content of adolescents in Yinchuan
-
摘要:
目的 分析青少年体脂肪分布与骨矿物质含量(bone mineral content, BMC)的关系以及在不同性别间的差异, 为青少年骨代谢疾病的防治提供科学依据。 方法 以整群随机抽样的方法从银川市选取1 575名12~18岁青少年作为研究对象, 进行问卷调查、体格检查、体成分及骨矿物质含量测定, 采用多元线性回归分析探讨校正混杂因素后体脂肪分布与BMC水平的关系。 结果 除四肢-全身脂肪比(LTFR)外, 男生全身脂肪含量(fat mass, FM)、四肢脂肪含量(appendicular fat mass, AFM)、躯干脂肪含量(trunk fat mass, TFM)、躯干-全身脂肪比(TrTFR)、躯干-四肢脂肪比(TrLFR)均低于女生(t值分别为-13.52, -15.18, -12.47, -12.25, -7.96, P值均 < 0.05);调整年龄、性别和体重后, FM、AFM、TFM、LTFR、TrTFR均与BMC水平呈负相关(P值均 < 0.05), 其中TFM每增加1个标准差, BMC水平下降0.53个标准差(95%CI=-0.57~-0.49, P < 0.01)。在男生中, LTFR与BMC水平呈负相关(B=-0.07)(P < 0.01), 而在女生中无相关性(B=0.01, P=0.74);在女生中, TrLFR与BMC水平呈负相关(B=-0.06)(P=0.03), 而在男生的相关性无统计学意义(B=-0.01, P=0.55)。 结论 青少年体脂肪分布存在性别差异, 且在这一时期, 体脂肪分布与骨矿物质含量显著相关。应多关注青少年体脂肪的分布, 为提早预防青少年骨代谢疾病提供科学依据。 Abstract:Objective To analyze the relationship between body fat distribution and bone mineral content (BMC) in adolescents and gender differences among Chinese adolescents, and to provide a scientific basis for the prevention and treatment of bone metabolic diseases. Methods A total of 1 575 adolescents aged 12-18 years old were selected from Yinchuan by cluster random sampling.Body composition and bone mineral content were measured by bioelectrical impedance analysis (BIA).Multiple linear regression analysis was used to explore the relationship between body fat distribution and BMC after adjusting for confounding factors. Results Except for LTFR, the levels of FM, AFM, TFM, TrTFR and TrLFR in boys were lower than those in girls (t=-13.52, -15.18, -12.47, -12.25, -7.96, P < 0.05);After adjusting for age, sex and weight, FM, AFM, TFM, TrTFR and TrLFR were all negatively correlated with BMC level (P < 0.05).For each increase of 1 standard deviation in TFM, BMC level decreased by 0.53 standard deviation (95%CI=-0.57--0.49, P < 0.01].LTFR had a linear negative correlation with BMC level in boys (B=0.07, P < 0.01), no similar correlation was found in girls (B=0.01, P=0.74).There was a linear negative correlation between TrLFR and BMC level in girls (B=-0.06, P=0.03), but the correlation was of no significance in boys (B=-0.01, P=0.55). Conclusion Sex difference in body fat distribution in Chinese adolescents is observed.Body fat distribution is closely related to bone minerals content in adolescents. -
Key words:
- Adipose tissue /
- Bone and bones /
- Minerals /
- Growth and development /
- Adolescent
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 不同性别学生体格检查指标、体脂肪含量与骨矿物质含量比较(x ±s)
Table 1. Comparison of physical examination, body fat content and bone mineral content among students of different genders(x ±s)
性别 人数 年龄/岁 身高/cm 体重/kg BMI/(kg·m-2) BMC/g FM/kg* 男 995 15.30±1.59 171.72±7.50 60.44±13.02 20.39±3.67 2 812.80±479.07 7.80(5.78, 12.90) 女 580 14.97±1.87 162.43±5.71 54.29±9.84 20.54±3.30 2 346.60±300.56 14.40(11.30, 18.50) 合计 1 575 15.18±1.71 168.32±8.22 58.18±12.31 20.45±3.54 2 642.01±478.45 10.80(6.70, 16.30) t/Z值 3.65 25.76 9.84 0.75 21.10 17.13 P值 < 0.01 < 0.01 < 0.01 0.45 < 0.01 < 0.01 性别 人数 AFM/kg* TFM/kg* LTFR/% TrTFR/% TrLFR/% 男 995 3.70(2.90, 5.70) 3.20(1.90, 6.13) 48.52±5.58 39.55±10.08 84.51±27.49 女 580 6.90(5.45, 8.70) 6.70(5.00, 8.95) 48.13±2.85 44.99±4.50 94.24±13.56 合计 1 575 5.00(3.30, 7.50) 4.80(2.50, 7.80) 48.38±4.77 41.54±8.87 88.08±23.84 t/Z值 19.04 15.89 1.58 -12.25 -7.96 P值 < 0.01 < 0.01 0.12 < 0.01 < 0.01 注:*为M(P25,P75)。 表 2 青少年体脂肪分布与BMC的偏相关分析(r值)
Table 2. Partial correlation between body fat distribution and BMC among adolescent(r)
变量 男(n=995) 女(n=580) 合计(n=1 575) FM -0.88** -0.85** -0.91** AFM -0.86** -0.80** -0.90** TFM -0.87** -0.84** -0.90** LTFR -0.06 0.05 0.08** TrTFR -0.19** -0.20** -0.41** TrLFR -0.12** -0.15** -0.33** 注:**P < 0.01。 表 3 青少年体脂肪分布指标与BMC的多元线性回归分析
Table 3. Multivariate linear regression analysis of body fat distribution and BMC among adolescent
变量 男(n=995) 女(n=580) 合计(n=1 575) B值(B值95%CI) P值 B值(B值95%CI) P值 B值(B值95%CI) P值 FM -0.61(-0.65~-0.57) < 0.01 -0.66(-0.75~-0.58) < 0.01 -0.52(-0.56~-0.48) < 0.01 AFM -0.56(-0.60~-0.53) < 0.01 -0.60(-0.68~-0.52) < 0.01 -0.48(-0.52~-0.45) < 0.01 TFM -0.63(-0.67~-0.58) < 0.01 -0.66(-0.74~-0.57) < 0.01 -0.53(-0.57~-0.49) < 0.01 LTFR -0.07(-0.11~-0.04) < 0.01 0.01(-0.04~0.05) 0.74 -0.03(-0.06~-0.01) 0.03 TrTFR -0.05(-0.09~-0.01) 0.01 -0.09(-0.15~-0.04) < 0.01 -0.06(-0.09~-0.03) < 0.01 TrLFR -0.01(-0.05~0.03) 0.55 -0.06(-0.11~-0.01) 0.03 -0.03(-0.06~0.01) 0.08 注:FM、AFM、TFM、LTFR、TrTFR、TrLFR、BMC均计算经性别-年龄别的标准化转换后的Z评分。 -
[1] HU L H, HU G P, HUANG X, et al. Different adiposity indices and their associations with hypertension among Chinese population from Jiangxi Province[J]. BMC Cardiovasc Disord, 2020, 20(1): 115. doi: 10.1186/s12872-020-01388-2 [2] LU Y Y, YANG H, XU Z Y, et al. Association between different obesity patterns and the risk of developing type 2 diabetes mellitus among adults in eastern China: a cross-sectional study[J]. Diabetes Metab Syndr Obes, 2021, 14: 2631-2639. doi: 10.2147/DMSO.S309400 [3] GHAZIZADEH H, MIRINEZHAD S M R, ASADI Z, et al. Association between obesity categories with cardiovascular disease and its related risk factors in the MASHAD cohort study population[J]. J Clin Lab Anal, 2020, 34(5): e23160. [4] 董虹孛, 闫银坤, 米杰. 儿童肥胖与骨量的双重性关系[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(4): 406-412. doi: 10.3969/j.issn.1674-2591.2019.04.012DONG H B, YAN Y K, MI J. Dual relationship between childhood obesity and bone mass[J]. Chin J Osteopor Bone Miner Res, 2019, 12(4): 406-412. doi: 10.3969/j.issn.1674-2591.2019.04.012 [5] MCCORMACK S E, COUSMINER D L, CHESI A, et al. Association between linear growth and bone accrual in a diverse cohort of children and adolescents[J]. JAMA Pediatr, 2017, 171(9): e171769. doi: 10.1001/jamapediatrics.2017.1769 [6] WEY H E, BINKLEY T L, BEARE T M, et al. Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children[J]. J Clin Endocrinol Metab, 2011, 96(1): 106-114. doi: 10.1210/jc.2010-0889 [7] LV S, ZHANG A, DI W, et al. Assessment of fat distribution and bone quality with Trabecular Bone Score (TBS) in healthy Chinese men[J]. Sci Rep, 2016, 6: 24935. doi: 10.1038/srep24935 [8] SHAO H, LI G W, LIU Y, et al. Contributions of fat mass and fat distribution to hip bone strength in healthy postmenopausal Chinese women[J]. J Bone Miner Metab, 2015, 33(5): 507-515. doi: 10.1007/s00774-014-0613-7 [9] ZHANG J, JIN Y, XU S, et al. Associations of fat mass and fat distribution with bone mineral density in Chinese obese population[J]. J Clin Densitom, 2015, 18(1): 44-49. doi: 10.1016/j.jocd.2014.03.001 [10] 教育部体育卫生与艺术教育司, 全国学生体质与健康调研组. 2019年全国学生体质与健康调研工作手册[M]. 北京: 全国学生体质与调研组, 2019: 17-24, 41-48.Department of Physical Education, Health and Art Education, Ministry of Education, National Student Physique and Health Research Group. 2019 national student physique and health research manual[M]. Beijing: National Student Physique and Research Group, 2019: 17-24, 41-48. [11] WEAVER C M, GORDON C M, JANZ K F, et al. The national osteoporosis foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations[J]. Osteoporos Int, 2016, 27(4): 1281-1386. doi: 10.1007/s00198-015-3440-3 [12] GOLDEN N H, ABRAMS S A. Optimizing bone health in children and adolescents[J]. Pediatrics, 2014, 134(4): e1229-e1243. doi: 10.1542/peds.2014-2173 [13] KINDLER J M, LOBENE A J, VOGEL K A, et al. Adiposity, insulin resistance, and bone mass in children and adolescents[J]. J Clin Endocrinol Metab, 2019, 104(3): 892-899. doi: 10.1210/jc.2018-00353 [14] ILICH J Z, KELLY O J, INGLIS J E, et al. Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels[J]. Ag Res Rev, 2014, 15: 51-60. doi: 10.1016/j.arr.2014.02.007 [15] 李凯凯. 银川市学龄儿童青少年体脂肪分布与心血管疾病危险因素的关系[D]. 银川: 宁夏医科大学, 2020.LI K K. Association between body fat distribution and cardiovascular disease risk factors in school-age children and adolescents in Yinchuan[D]. Yinchuan: Ningxia Medical University, 2020. [16] 刘晴. 基于成分数据方法探讨儿童青少年体成分特征及影响因素[D]. 广州: 广东药科大学, 2020.LIU Q. Study on the characteristics and influencing factors of body composition in children and adolescents based on compositional data method[D]. Guangzhou: Guangdong Pharmaceutical University, 2020. [17] THOMAS G N, HO S Y, LAM K S, et al. Impact of obesity and body fat distribution on cardiovascular risk factors in Hong Kong Chinese[J]. Obes Res, 2004, 12(11): 1805-1813. doi: 10.1038/oby.2004.224 [18] DENG K L, LI H, YANG W Y, et al. Analysis of the association between fat mass distribution and bone mass in Chinese male adolescents at different stages of puberty[J]. Nutrients, 2021, 13(7): 2163. doi: 10.3390/nu13072163 [19] LIANG J, CHEN Y, ZHANG J, et al. Associations of weight-adjusted body fat and fat distribution with bone mineral density in Chinese children aged 6-10 years[J]. Int J Environ Res Public Health, 2020, 17(5): 1763. doi: 10.3390/ijerph17051763 [20] ROKOFF L B, RIFAS-SHIMAN S L, SWITKOWSKI K M, et al. Body composition and bone mineral density in childhood[J]. Bone, 2019, 121: 9-15. doi: 10.1016/j.bone.2018.12.009 [21] POLLOCK N K. Childhood obesity, bone development, and cardiometabolic risk factors[J]. Mol Cell Endocrinol, 2015, 410: 52-63. doi: 10.1016/j.mce.2015.03.016 [22] MOTYL K J, ROSEN C J. Understanding leptin-dependent regulation of skeletal homeostasis[J]. Biochimie, 2012, 94(10): 2089-2096. doi: 10.1016/j.biochi.2012.04.015 [23] SOININEN S, SIDOROFF V, LINDI V, et al. Body fat mass, lean body mass and associated biomarkers as determinants of bone mineral density in children 6-8 years of age-the Physical Activity and Nutrition in Children (PANIC) study[J]. Bone, 2018, 108: 106-114. doi: 10.1016/j.bone.2018.01.003 [24] BRABNIKOVA M K, JAROSOVA K, PAVELKA K, et al. The association between lean mass and bone mineral content in the high disease activity group of adult patients with juvenile idiopathic arthritis[J]. BMC Musculoskelet Disord, 2014, 15: 51. doi: 10.1186/1471-2474-15-51 [25] JIA X, LIU L, WANG R, et al. Relationship of two-hour plasma glucose and abdominal visceral fat with bone mineral density and bone mineral content in women with different glucose metabolism status[J]. Diabetes Metab Syndr Obes, 2020, 13: 851-858. doi: 10.2147/DMSO.S245096 [26] SONG C, ZHU M, ZHENG R, et al. Analysis of bone mass and its relationship with body composition in school-aged children and adolescents based on stage of puberty and site specificity: a retrospective case-control study[J]. Medicine(Baltimore), 2019, 98(8): e14005. [27] GUO B, WU Q, GONG J, et al. Relationships between the lean mass index and bone mass and reference values of muscular status in healthy Chinese children and adolescents[J]. J Bone Miner Metab, 2016, 34(6): 703-713. doi: 10.1007/s00774-015-0725-8 -

计量
- 文章访问数: 483
- HTML全文浏览量: 182
- PDF下载量: 16
- 被引次数: 0