Association of nutrition-related knowledge and psychosocial factors on screen related sedentary of primary school students aged 10-12 in Beijing
-
摘要:
目的 高年级小学生视屏行为现状, 分析社会心理决定因素和营养相关知识对该行为的影响, 为改善儿童视屏行为的干预设计提供多方面的指导。 方法 于2020年1月, 方便抽取北京市2所小学四至六年级共1 316名学生作为研究对象, 通过问卷收集视屏行为(看电视、玩电子游戏)、自我效能、习惯强度、结果预期、目标实现能力和营养相关知识的相关信息。使用无序多分类Logistic回归和随机森林算法进行分析。 结果 小学生视屏频率为5.0(3.0, 10.5)次/周, 视屏时间为37.5(9.6, 97.5)min/d。无序多分类Logistic回归结果显示, 目标实现能力、营养相关知识、习惯强度、自我效能和性别与视屏频率的相关具有统计学意义(OR值分别为1.6, 1.7, 4.9, 4.2, 1.5), 营养相关知识、习惯强度、自我效能、结果预期、年级与视屏时间的相关均有统计学意义(OR值分别为1.7, 5.6, 5.7, 1.6, 1.6, 1.7)(P值均 < 0.05)。随机森林结果显示, 重要程度排名前4位的相关因素, 视屏频率方面为自我效能、目标实现能力、习惯强度和营养相关知识, 视屏时间方面为自我效能、结果预期、营养相关知识和习惯强度。 结论 高年级小学生存在较严重的视屏行为, 应增大针对其相关因素的健康教育力度。 Abstract:Objective To explore the screen related sedentary behavior among senior primary school students in Beijing and to analyze the influence of psychosocial determinants and nutrition-related knowledge on the behavior. Methods In January 2020, a total of 1 316 students in grade 4-6 from two primary schools in Beijing were selected. Information on video-viewing (watching TV or playing video games), self-efficacy, habit strength, nutrition-related knowledge, outcome expectation and the capacity to persist toward goal attainment were collected through questionnaires. Disordered multi-classification Logistic regression and random forest algorithm were used to analyze the influencing factors. Results The frequency of screen related sedentary was 5.0(3.0, 10.5) times/week, and the duration was 37.5(9.6, 97.5) min/d in senior elementary school children. The results of disordered multi-classification Logistic regression showed that the capacity to persist toward goal attainment, nutrition-related knowledge, habit strength, self-efficacy and gender positively correlated with the frequency of screen related sedentary (OR=1.6, 1.7, 4.9, 4.2, 1.5), while the nutrition-related knowledge, habit strength, self-efficacy, outcome expectations, grade and gender positively correlated with screen time (OR=1.7, 5.6, 5.7, 1.6, 1.6, 1.7)(P < 0.05). Random forest regression tree model showed that the top four influencing factors on screen related sedentary frequency were self-efficacy, the capacity to persist toward goal attainment, habit strength and nutrition-related knowledge and the top four influencing factors on screen time were self-efficacy, outcome expectation, nutrition-related knowledge, habit strength. Conclusion Screen related sedentary behavior is prevalent among senior primary school students in Beijing. Health education should be strengthened regarding influencing factors of screen related sedentary behavior. -
Key words:
- Fixation, ocular /
- Psychology, social /
- Knowledge /
- Regression analysis /
- Students
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 不同组别高年级小学生视屏行为及其相关社会心理决定因素比较[M(P25,P75)]
Table 1. Comparison of screen-related sedentary behaviour and psychosocial determinants among different groups of upper elementary school student[M(P25, P75)]
组别 自变量 人数 统计值 视屏 目标实现能力* 营养相关知识 习惯强度 结果预期 自我效能* 频率(次/周) 时间(min/d) 年级 四 493 5.0(3.0,10.5) 25.7(9.6,67.5) 4.2±0.9 3.0(1.2,4.0) 2.0(1.0,3.0) 1.0(1.0,2.3) 4.2±1.1 五 418 5.0(1.5,10.5) 30.0(7.5,97.5) 4.1±1.0 3.0(2.0,4.0) 2.0(1.0,3.0) 1.0(1.0,2.3) 4.0±1.2 六 405 7.0(3.5,14.0) 54.6(20.1,120.0) 4.0±1.1 3.0(2.0,4.0) 3.0(2.0,4.0) 1.7(1.0,2.7) 3.8±1.2 H/F值 23.9 41.7 3.8 0.6 36.5 33.7 14.5 P值 < 0.01 < 0.01 0.02 0.58 < 0.01 < 0.01 < 0.01 性别a 男 675 7.0(3.0,14.0) 45.0(16.1,112.5) 4.0±1.1 3.0(1.0,4.0) 3.0(1.0,4.0) 1.7(1.0,3.0) 3.9±1.3 女 637 5.0(1.5,10.5) 25.7(6.4,82.5) 4.2±0.9 3.0(2.0,4.0) 2.0(1.0,3.0) 1.0(1.0,2.0) 4.2±1.1 t/Z值 -5.6 -5.5 -4.4 -3.1 -7.2 -6.0 -4.4 P值 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 营养状况a 消瘦 47 7.0(3.0,9.5) 30.0(10.2,81.4) 4.0±1.1 3.0(1.0,4.0) 3.0(1.0,3.0) 1.3(1.0,2.8) 3.7±1.4 低体重 89 5.0(1.5,8.5) 23.6(7.5,67.5) 4.3±0.8 3.0(2.0,4.0) 1.0(1.0,3.0) 1.0(1.0,2.0) 4.4±0.9 体重适中 838 5.0(3.0,10.5) 32.1(9.6,97.5) 4.1±1.0 3.0(2.0,4.0) 2.0(1.0,3.0) 1.3(1.0,2.3) 4.0±1.2 超重 145 5.0(3.5,10.5) 47.1(22.5,97.5) 3.9±1.0 3.0(1.0,4.0) 3.0(1.0,4.0) 1.3(1.0,2.7) 3.9±1.2 肥胖 193 7.0(3.0,14.0) 45.0(12.9,150.0) 4.0±1.1 3.0(1.2,4.0) 2.0(1.0,3.0) 1.0(1.0,2.3) 4.0±1.3 H/F值 11.2 15.7 2.7 14.8 15.7 9.2 4.2 P值 0.02 < 0.01 0.03 < 0.01 < 0.01 0.06 < 0.01 合计 1 316 5.0(3.0,10.5) 37.5(9.6,97.5) 4.1±1.0 3.0(2.0,4.0) 2.0(1.0,3.0) 1.3(1.0,2.3) 4.0±1.2 注:*采用(x±s)描述;a数据缺失4份。 表 2 不同视屏行为学生相关社会心理决定因素比较[M(P25,P75)]
Table 2. Comparison of screen-related sedentary behavior among student with different levels of sedentary behavior frequency[M(P25, P75)]
组别 选项 人数 统计值 目标实现能力* 习惯强度 结果预期 自我效能* 营养相关知识 视屏频率/(次·周-1) ≤3.0 585 4.3±0.8 1.0(1.0,2.0) 1.0(1.0,1.7) 4.6±0.8 3.0(2.0,4.0) >3.0~10.5 439 4.2±0.9a 2.0(1.0,3.0)a 1.3(1.0,2.3)a 4.1±1.0a 3.0(2.0,4.0)a >10.5 292 3.6±1.2ab 3.0(2.0,5.0)ab 2.3(1.0,3.7)ab 3.1±1.4ab 2.0(1.0,4.0)ab F/H值 61.6 250.0 139.1 183.6 40.5 P值 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 视屏时间/(min·d-1) ≤9.6 341 4.4±0.8 1.0(1.0, 2.0) 1.0(1.0, 1.42) 4.6±0.7 3.0(2.0, 4.0) >9.6~97.5 636 4.2±0.9c 2.0(1.0, 3.0)c 1.3(1.0, 2.3)c 4.2±1.0c 3.0(2.0, 4.0) >97.5 339 3.6±1.2cd 3.0(2.0, 5.0)cd 2.3(1.0, 3.3)cd 3.1±1.4cd 2.0(1.0, 4.0)cd F/H值 52.6 265.3 154.1 285.0 48.1 P值 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 注:a表示与视屏频率≤3.0次/周相比,P < 0.05;b表示与每周视屏频率(>3.0~10.5)次/周相比,P < 0.05;c表示与视屏时间≤9.6 min/d相比,P < 0.05;d表示与视屏频率(>9.6~97.5)min/d相比,P < 0.05。*采用(x±s)描述。 表 3 高年级小学生视屏行为相关因素的无序多分类Logistic回归分析[OR值(OR值95%CI), n=1 316]
Table 3. Disordered multi-classification Logistic regression analysis of screen-related sedentary behaviour among upper elementary school children[OR(OR 95%CI), n=1 316]
相关因素 视屏频率 视屏时间 中度水平 高度水平 中度水平 高度水平 目标实现能力 0.9(0.7~1.2) 1.6(1.1~2.3)** 1.0(0.8~1.4) 1.4(1.0~2.0) 营养相关知识 1.2(0.9~1.6) 1.7(1.2~2.5)** 1.1(0.9~1.5) 1.7(1.2~2.5)** 习惯强度 2.9(2.1~4.0)** 4.9(3.3~7.2)** 3.0(2.1~4.3)** 5.6(3.7~8.4)** 结果预期 1.1(0.8~1.5) 1.4(1.0~2.1) 1.3(1.0~1.8) 1.6(1.1~2.3)* 自我效能 1.9(1.4~2.6)** 4.2(2.8~6.2)** 2.0(1.4~2.9)** 5.7(3.7~8.6)** 性别 1.5(1.2~2.0)** 1.5(1.0~2.1)* 1.4(1.1~1.9)* 1.4(1.0~2.0) 年级 五 1.1(0.7~1.6) 0.9(0.7~1.3) 0.9(0.6~1.2) 1.6(1.1~1.2)* 六 1.5(1.0~2.3)* 1.3(0.9~1.8) 2.3(1.2~4.6)** 1.7(1.1~2.6)* 注:目标实现能力、营养相关知识、自我效能以高为对照组,习惯强度、结果预期以低为对照组,性别以女生为对照,年级以四年级为对照;*P < 0.05,**P < 0.01。 -
[1] MOUGHARBEL F, GOLDFIELD G S. Psychological correlates of sedentary screen time behaviour among children and adolescents: a narrative review[J]. Curr Obes Rep, 2020, 9(4): 493-511. doi: 10.1007/s13679-020-00401-1 [2] 陶舒曼, 伍晓艳, 陶芳标. 视屏活动对儿童青少年情绪症状的影响及大脑神经功能变化研究[J]. 中国学校卫生, 2020, 41(11): 1757-1760. doi: 10.16835/j.cnki.1000-9817.2020.11.042TAO S M, WU X Y, TAO F B. Study on the influence of video activity on children and adolescents emotional symptoms and the changes of brain neural function[J]. Chin J Sch Health, 2020, 41(11): 1757-1760. doi: 10.16835/j.cnki.1000-9817.2020.11.042 [3] 梁明玥, 徐渴, 孙志颖, 等. 天津市中小学生视屏行为对视力不良的影响[J]. 中国慢性病预防与控制, 2022, 30(4): 265-268, 272. https://www.cnki.com.cn/Article/CJFDTOTAL-ZMXB202204006.htmLIANG M Y, XU K, SUN Z Y, et al. Effects of electronic screen use on poor eyesight among primary and secondary school students in Tianjin[J]. Chin J Prev Contr Chron Dis, 2022, 30(4): 265-268, 272. https://www.cnki.com.cn/Article/CJFDTOTAL-ZMXB202204006.htm [4] WESTBY C. Screen time and children with autism spectrum disorder[J]. Folia Phoniatr Logop, 2021, 73(3): 233-240. doi: 10.1159/000506682 [5] 鲜金利. 重庆市4~5年级小学生视屏相关因素对其饮食行为和超重肥胖的影响. 重庆: 重庆医科大学, 2021.XIAN J L. Evaluation on the influence of screen related factors on dietray behaviours and overweight and obesity among 4-5 grade pupils in Chongqing. Chongqing: Chongqing Medical University, 2021. [6] 吕子昕, 李涛. 京津冀地区儿童青少年体力活动视屏和睡眠时间与超重肥胖的关系[J]. 中国学校卫生, 2022, 43(4): 502-506. doi: 10.16835/j.cnki.1000-9817.2022.04.005LYU Z X, LI T. Relationship between physical activity screen time and sleep duration and overweight and obesity among children and adolescents in Beijing-Tianjin-Hebei region[J]. Chin J Sch Health, 2022, 43(4): 502-506. doi: 10.16835/j.cnki.1000-9817.2022.04.005 [7] ZHU Z, TANG Y, ZHUANG J, et al. Physical activity, screen viewing time, and overweight/obesity among Chinese children and adolescents: an update from the 2017 physical activity and fitness in China-the youth study[J]. BMC Public Health, 2019, 19(1): 197. doi: 10.1186/s12889-019-6515-9 [8] 苑晓琳, 刘开琦, 王玉英, 等. 中国11~14岁儿童视屏时间与近视的关系[J]. 中国学校卫生, 2022, 43(3): 333-337. doi: 10.16835/j.cnki.1000-9817.2022.03.004YUAN X L, LIU K Q, WANG Y Y, et al. Relationship between screen time and myopia in children aged 11-14 years in China[J]. Chin J Sch Health, 2022, 43(3): 333-337. doi: 10.16835/j.cnki.1000-9817.2022.03.004 [9] 教育部, 国家卫生健康委员会, 国家体育总局, 等. 综合防控儿童青少年近视实施方案[J]. 中国学校卫生, 2018, 39(9): 1279-1280. http://www.cjsh.org.cn/article/id/zgxxws201809051Ministry of Education of the PRC, National Health Commission of the PRC, General Administration of Sport of China, et al. Plan for comprehensive prevention and control of myopia in children and adolescents[J]. Chin J Sch Health, 2018, 39(9): 1279-1280. http://www.cjsh.org.cn/article/id/zgxxws201809051 [10] BAGHERNIYA M, TAGHIPOUR A, SHARMA M, et al. Obesity intervention programs among adolescents using social cognitive theory: a systematic literature review[J]. Health Educ Res, 2018, 33(1): 26-39. doi: 10.1093/her/cyx079 [11] 国家卫生健康委员会. 学龄儿童青少年超重与肥胖筛查:WS/T 586—2018[S]. 2018-08-01. National Health and Family Planning Commission of the PRC. Screening for overweight and obesity among school-age children and adolescents: WS/T 586-2018[S]. 2018-08-01. [12] DE ONIS M, ONYANGO A W, BORGHI E, et al. Development of a WHO growth reference for school-aged children and adolescent[J]. Bull World Health Organ, 2007, 85(9): 660-667. doi: 10.2471/BLT.07.043497 [13] CONROY D E, MAHER J P, ELAVSKY S, et al. Sedentary behavior as a daily process regulated by habits and intentions[J]. Health Psychol, 2013, 32(11): 1149-1157. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134884/ [14] MAHER J P, DUNTON G F. Editor's choice: dual-process model of older adults' sedentary behavior: an ecological momentary assessment study[J]. Psychol Health, 2020, 35(5): 519-537. https://www.sciencedirect.com/science/article/pii/S0749379711003229 [15] WILLIAMS D M, RHODES R E. The confounded self-efficacy construct: conceptual analysis and recommendations for future research[J]. Health Psychol Rev, 2016, 10(2): 113-128. doi: 10.1080/17437199.2014.941998 [16] GEBREMARIAM M K, HENJUM S, TERRAGNI L, et al. Correlates of screen time and mediators of differences by parental education among adolescents[J]. BMC Pediatr, 2020, 20(1): 279. [17] XU J. Factors affecting adolescents screen viewing duration: a social cognitive approach based on the family life, activity, sun, health and eating (flashe) survey[J]. J Health Commun, 2021, 26(1): 19-27. [18] BANDEIRA A D S, SILVA K S, BASTOS J L D, et al. Psychosocial mediators of screen time reduction after an intervention for students from schools in vulnerable areas: a cluster-randomized controlled trial[J]. J Sci Med Sport, 2020, 23(3): 264-269. [19] DAY N, PAAS F, KERVIN L, et al. A systematic scoping review of pre-school self-regulation interventions from a self-determination theory perspective[J]. Int J Environ Res Public Health, 2022, 19(4): 2454. [20] PACHU N, STRACHAN S, MCMILLAN D, et al. University students' knowledge, self-efficacy, outcome expectations, and barriers related to reducing sedentary behavior: a qualitative study[J]. J Am Coll Health, 2022, 70(4): 1146-1153. https://www.sciencedirect.com/science/article/pii/S0001879108000651 [21] MERGELSBERG E L P, MULLAN B A, ALLOM V, et al. An intervention designed to investigate habit formation in a novel health behaviour[J]. Psychol Health, 2021, 36(4): 405-426. [22] PEARSON N, BIDDLE S J H, GRIFFITHS P, et al. Reducing screen-time and unhealthy snacking in 9-11 year old children: the Kids FIRST pilot randomised controlled trial[J]. BMC Public Health, 2020, 20(1): 122. https://pubmed.ncbi.nlm.nih.gov/31996192/ [23] WADOLOWSKA L, HAMULKA J, KOWALKOWSKA J, et al. Prudent-active and fast-food-sedentary dietary-lifestyle patterns: the association with adiposity, nutrition knowledge and sociodemographic factors in polish teenagers-the ABC of healthy eating project[J]. Nutrients, 2018, 10(12): 1988. https://www.mdpi.com/2072-6643/10/12/1988 [24] SONG Y, LI L, XU Y, et al. Associations between screen time, negative life events, and emotional and behavioral problems among Chinese children and adolescents[J]. J Affect Disord, 2020, 264: 506-512. doi: 10.1007/s00787-016-0912-8 [25] 龙鑫, 张夏男, 张洪伟, 等. 北京市高年级小学生电子产品使用现况及影响因素分析[J]. 中国学校卫生, 2020, 41(5): 673-675, 679. doi: 10.16835/j.cnki.1000-9817.2020.05.011LONG X, ZHANG X N, ZHANG H W, et al. Prevalence and associated factors of electronic products usage among primary school students of grade 4-6 in Beijing[J]. Chin J Sch Health, 2020, 41(5): 673-675, 679. doi: 10.16835/j.cnki.1000-9817.2020.05.011 [26] 凌应强. 中小学生智能手机使用的现状与出路[J]. 今日教育, 2021(6): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JRJI202106008.htmLING Y Q. Current situation and outlet of smart phone use of primary and middle school students[J]. Educ Today, 2021(6): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JRJI202106008.htm [27] GUIMARAES R F, MATHIEU M E, REID R E R, et al. Physical activity, screen time, and sleep trajectories from childhood to adolescence: the influence of sex and body weight status[J]. J Phys Act Health, 2021, 18(7): 767-773. https://www.hindawi.com/journals/isrn/2014/204540/ [28] ZHANG P, TANG X, PENG X, et al. Effect of screen time intervention on obesity among children and adolescent: a Meta-analysis of randomized controlled studies[J]. Prev Med, 2022, 157: 107014. [29] TAMBALIS K D, PANAGIOTAKOS D B, PSARRA G, et al. Screen time and its effect on dietary habits and lifestyle among schoolchildren[J]. Cent Eur J Public Health, 2020, 28(4): 260-266. [30] BIDDLE S J H, BENGOECHEA E G, WIESNE R G. Sedentary behaviour and adiposity in youth: a systematic review of reviews and analysis of causality[J]. Int J Behav Nutr Physical Act, 2017, 14(1): 1-12. doi: 10.1186/s12966-017-0497-8 -

计量
- 文章访问数: 582
- HTML全文浏览量: 222
- PDF下载量: 63
- 被引次数: 0