留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海地区4~14岁儿童1年屈光进展及影响因素分析

项凯迪 王菁菁 潘臣炜 陈军 戚紫怡 邹海东 许迅 何鲜桂

项凯迪, 王菁菁, 潘臣炜, 陈军, 戚紫怡, 邹海东, 许迅, 何鲜桂. 上海地区4~14岁儿童1年屈光进展及影响因素分析[J]. 中国学校卫生, 2022, 43(9): 1309-1313. doi: 10.16835/j.cnki.1000-9817.2022.09.008
引用本文: 项凯迪, 王菁菁, 潘臣炜, 陈军, 戚紫怡, 邹海东, 许迅, 何鲜桂. 上海地区4~14岁儿童1年屈光进展及影响因素分析[J]. 中国学校卫生, 2022, 43(9): 1309-1313. doi: 10.16835/j.cnki.1000-9817.2022.09.008
XIANG Kaidi, WANG Jingjing, PAN Chenwei, CHEN Jun, QI Ziyi, ZOU Haidong, XU Xun, HE Xiangui. Refractive progression among students aged 4-14 in Shanghai and associated factors[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2022, 43(9): 1309-1313. doi: 10.16835/j.cnki.1000-9817.2022.09.008
Citation: XIANG Kaidi, WANG Jingjing, PAN Chenwei, CHEN Jun, QI Ziyi, ZOU Haidong, XU Xun, HE Xiangui. Refractive progression among students aged 4-14 in Shanghai and associated factors[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2022, 43(9): 1309-1313. doi: 10.16835/j.cnki.1000-9817.2022.09.008

上海地区4~14岁儿童1年屈光进展及影响因素分析

doi: 10.16835/j.cnki.1000-9817.2022.09.008
基金项目: 

国家重点研发计划课题项目 2021YFC2702100

国家重点研发计划课题项目 2021YFC2702104

国家重点研发计划课题项目 2019YFC0840607

上海市公共卫生优秀学科带头人培养计划 GWV-10.2-XD09

详细信息
    作者简介:

    项凯迪(1996-),男,浙江金华人,在读硕士,主要研究方向为儿童青少年近视防控

    通讯作者:

    何鲜桂,E-mail:xianhezi@163.com

  • 利益冲突声明  所有作者声明无利益冲突。
  • 中图分类号: R778.11 G478 R779.7

Refractive progression among students aged 4-14 in Shanghai and associated factors

  • 摘要:   目的  了解不同年龄和屈光状态儿童屈光进展情况及其影响因素,为近视防控方案制定和工作实践提供参考。  方法  基于已有队列分层整群抽取上海嘉定区和松江区共20所幼儿园和中小学校,收集1 510名4~14岁儿童2015年基线及2016年1年随访数据,包括睫状肌麻痹等效球镜(SER)、眼轴长度(AL)和角膜曲率等,分析SER和AL在不同年龄、屈光状态儿童中的分布和进展,采用多元线性回归探索SER进展量的影响因素。  结果  4~5岁儿童ΔSER保持相对稳定(平均-0.08~-0.07 D/年),6岁以上各年龄段SER均向近视方向明显漂移(平均-0.50~-0.31 D/年),11岁后回落至-0.44~-0.33 D/年;ΔAL在4~10岁组为0.27~0.35 mm/年,11~14岁组降低为0.15~0.22 mm/年。新发近视者的ΔSER和ΔAL最大[(-0.90±0.05)D,(0.51±0.02)mm],其次是低度近视组[(-0.68±0.04)D,(0.36±0.02)mm],中高度近视组[(-0.49±0.06)D,(0.23±0.03)mm]再次之,远视组[(-0.21±0.02)D,(0.26±0.01)mm]最低,差异均有统计学意义(P值均 < 0.05)。年龄(β=-0.07)、基线SER(β=0.05)和ΔAL(β=-0.78)是4~10岁组屈光进展的独立影响因素,ΔAL(β=-1.55)是11~14岁组屈光进展的独立影响因素(P值均 < 0.05)。  结论  学龄前阶段儿童眼轴多为生理性增长,应通过增加户外活动等防止其超越生理性范围增长引起屈光近视化进展。小学阶段、近视前期和低度近视对象是近视防控重点动态监控和干预人群。
    1)  利益冲突声明  所有作者声明无利益冲突。
  • 表  1  4~14岁儿童屈光和眼轴基线值、1年随访值及进展量(x±s)

    Table  1.   Baseline, one-year follow-up and progression values of SER and AL in children aged 4-14(x±s)

    基线年龄/岁 人数 SER/D AL/mm
    基线值 随访值 进展量 基线值 随访值 进展量
    4 285 1.28±0.80 1.21±0.83 -0.07±0.49 22.13±0.66 22.42±0.67 0.29±0.22
    5 255 1.39±1.02 1.32±1.03 -0.08±0.47 22.26±0.71 22.52±0.71 0.27±0.23
    6 124 1.12±0.69 0.67±0.97 -0.45±0.55 22.65±0.75 23.01±0.81 0.36±0.33
    7 175 0.90±0.99 0.59±1.22 -0.31±0.48 23.00±0.67 23.30±0.71 0.30±0.24
    8 195 0.27±1.42 -0.23±1.76 -0.49±0.52 23.37±0.80 23.67±0.89 0.31±0.22
    9 161 0.00±1.68 -0.49±1.90 -0.49±0.47 23.42±0.96 23.73±1.01 0.31±0.25
    10 49 -0.10±1.23 -0.57±1.70 -0.47±0.88 23.59±1.12 23.94±1.20 0.35±0.26
    11 50 -0.60±1.80 -1.10±2.10 -0.50±0.46 23.92±1.06 24.14±1.14 0.22±0.17
    12 64 -0.72±1.61 -1.12±1.84 -0.39±0.65 23.91±0.80 24.13±0.88 0.21±0.17
    13 55 -1.57±2.35 -2.00±2.54 -0.44±0.39 24.42±1.06 24.64±1.09 0.22±0.16
    14 97 -2.77±2.70 -3.10±2.81 -0.33±0.48 24.77±1.43 24.92±1.45 0.15±0.15
    下载: 导出CSV

    表  2  不同屈光状态儿童屈光和眼轴基线值、1年随访值及进展量(x±s)

    Table  2.   Baseline, one-year follow-up and progression values of SER and AL in children with different refractive states(x±s)

    屈光状态 人数 SER/D AL/mm
    基线值 随访值 进展量 基线值 随访值 进展量
    远视 756 1.52±0.82 1.33±0.89 -0.21±0.02 22.43±0.78 22.68±0.77 0.26±0.01
    近视前期 467 0.40±0.33 0.15±0.74 -0.24±0.02 23.05±0.80 23.35±0.82 0.29±0.01
    低度近视 206 -1.49±0.72 -2.20±0.89 -0.68±0.04 24.18±0.71 24.54±0.70 0.36±0.02
    中高度近视 81 -4.89±1.71 -5.43±1.85 -0.49±0.06 25.58±1.10 25.81±1.11 0.23±0.03
    下载: 导出CSV

    表  3  不同年龄段儿童屈光年进展量的多元线性回归分析

    Table  3.   Multiple linguistic regression analysis of one-year ΔSER of children of different ages

    截距与自变量 β 标准误 t P B
    4~10岁组(n=1 244)
      截距 0.47 0.43 1.10 0.27
      年龄 -0.07 0.01 -8.58 < 0.01 -0.23
      性别 -0.01 0.03 -0.46 0.64 -0.01
      基线SER 0.05 0.01 4.60 < 0.01 0.13
      基线角膜曲率 -0.02 0.05 -0.31 0.76 -0.01
      ΔAL -0.78 0.06 -14.21 < 0.01 -0.36
    11~14岁组(n=266)
      截距 -1.35 0.94 -1.44 0.15
      年龄 0.03 0.03 1.34 0.18 0.08
      性别 -0.09 0.06 -1.52 0.13 -0.08
      基线SER 0.02 0.01 1.85 0.07 0.11
      基线角膜曲率 0.12 0.11 1.15 0.25 0.06
      ΔAL -1.55 0.17 -9.05 < 0.01 -0.49
    注:以上模型中自变量VIF均 < 2,变量间共线性弱;性别赋值为男=1,女=2。
    下载: 导出CSV
  • [1] MORGAN I G, FRENCH A N, ASHBY R S, et al. The epidemics of myopia: aetiology and prevention[J]. Prog Retin Eye Res, 2018, 62: 134-149. doi: 10.1016/j.preteyeres.2017.09.004
    [2] 樊泽民, 黄象好. 综合防控儿童青少年近视3年工作成效与下一步工作重点[J]. 中国学校卫生, 2021, 42(12): 1765-1767. doi: 10.16835/j.cnki.1000-9817.2021.12.002

    FAN Z M, HUANG X H. Comprehensive prevention and control of myopia in children and adolescents: progress in the past three years and future priorities[J]. Chin J Sch Health, 2021, 42(12): 1765-1767. doi: 10.16835/j.cnki.1000-9817.2021.12.002
    [3] SANKARIDURG P, TAHHAN N, KANDEL H, et al. IMI impact of myopia[J]. Invest Ophthalmol Vis Sci, 2021, 62(5): 2. doi: 10.1167/iovs.62.5.2
    [4] YAHYA A N, SHARANJEET-KAUR S, AKHIR S M. Distribution of refractive errors among healthy infants and young children between the age of 6 to 36 months in Kuala Lumpur, Malaysia: a pilot study[J]. Int J Environ Res Public Health, 2019, 16(23): 4730. doi: 10.3390/ijerph16234730
    [5] 何鲜桂, 潘臣炜. 儿童青少年近视防控需要更高质量的研究证据[J]. 中国学校卫生, 2021, 42(2): 161-164. doi: 10.16835/j.cnki.1000-9817.2021.02.001

    HE X G, PAN C W. Prevention and control of children and adolescents myopia needs more high-quality research evidence[J]. Chin J Sch Health, 2021, 42(2): 161-164. doi: 10.16835/j.cnki.1000-9817.2021.02.001
    [6] TEDJA M S, HAARMAN A E G, MEESTER-SMOOR M A, et al. IMI-myopia genetics report[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M89-M105. doi: 10.1167/iovs.18-25965
    [7] LANCA C, YAM J C, JIANG W J, et al. Near work, screen time, outdoor time and myopia in schoolchildren in the Sunflower Myopia AEEC Consortium[J]. Acta Ophthalmol, 2022, 100(3): 302-311. doi: 10.1111/aos.14942
    [8] HARB E N, WILDSOET C F. Origins of refractive errors: environmental and genetic factors[J]. Ann Rev Vis Sci, 2019, 5: 47-72. doi: 10.1146/annurev-vision-091718-015027
    [9] TIDEMAN J W L, POLLING J R, VINGERLING J R, et al. Axial length growth and the risk of developing myopia in European children[J]. Acta Ophthalmol, 2018, 96(3): 301-309. doi: 10.1111/aos.13603
    [10] PÄRSSINEN O, SOH D Z, TAN C S, et al. Comparison of myopic progression in Finnish and Singaporean children[J]. Acta Ophthalmol, 2021, 99(2): 171-180. doi: 10.1111/aos.14545
    [11] PÄRSSINEN O, KAUPPINEN M. Risk factors for high myopia: a 22-year follow-up study from childhood to adulthood[J]. Acta Ophthalmol, 2019, 97(5): 510-518. doi: 10.1111/aos.13964
    [12] VERKICHARLA P K, KAMMARI P, DAS A V. Myopia progression varies with age and severity of myopia[J]. PLoS One, 2020, 15(11): e0241759. doi: 10.1371/journal.pone.0241759
    [13] MA Y, LIN S, MORGAN I G, et al. Eyes grow towards mild hyperopia rather than emmetropia in Chinese preschool children[J]. Acta Ophthalmol, 2021, 99(8): e1274-e1280.
    [14] XIONG S, HE X, SANKARIDURG P, et al. Accelerated loss of crystalline lens power initiating from emmetropia among young school children: a 2-year longitudinal study[J]. Acta Ophthalmol, 2022, 100(4): e968-e976.
    [15] MA Y, ZOU H, LIN S, et al. Cohort study with 4-year follow-up of myopia and refractive parameters in primary schoolchildren in Baoshan District, Shanghai[J]. Clin Exper Ophthalmol, 2018, 46(8): 861-872. doi: 10.1111/ceo.13195
    [16] SANKARIDURG P, HE X, NADUVILATH T, et al. Comparison of noncycloplegic and cycloplegic autorefraction in categorizing refractive error data in children[J]. Acta Ophthalmol, 2017, 95(7): e633-e640. doi: 10.1111/aos.13569
    [17] MA Y, QU X, ZHU X, et al. Age-specific prevalence of visual impairment and refractive error in children aged 3-10 years in Shanghai, China[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6188-6196. doi: 10.1167/iovs.16-20243
    [18] GUO X, FU M, DING X, et al. Significant axial elongation with minimal change in refraction in 3-to 6-year-old Chinese preschoolers: the Shenzhen kindergarten eye study[J]. Ophthalmology, 2017, 124(12): 1826-1838. doi: 10.1016/j.ophtha.2017.05.030
    [19] 中华医学会眼科学分会斜视与小儿眼科学组. 中国儿童睫状肌麻痹验光及安全用药专家共识(2019年)[J]. 中华眼科杂志, 2019, 55(1): 7-12. doi: 10.3760/cma.j.issn.0412-4081.2019.01.003

    Chinese Association for Pediatric Opthalmology and Strabismus. Expert consensus on optometry and safe use of medication in children with ciliary muscle paralysis in China (2019)[J]. Chin J Ophthalmol, 2019, 55(1): 7-12. doi: 10.3760/cma.j.issn.0412-4081.2019.01.003
    [20] FLITCROFT D I, HE M, JONAS J B, et al. IMI-defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies[J]. Invest OphthalmOl Vis Sci, 2019, 60(3): M20-M30. doi: 10.1167/iovs.18-25957
    [21] 国家卫生健康委办公厅关于开展第二批儿童青少年近视防控适宜技术试点工作的通知[EB/OL]. (2021-10-09)[2022-03-03]. http://www.nhc.gov.cn/jkj/s7934td/202110/0fc8a001d42345d9ac9b38842b295fe7.shtml.

    Note from the National Health Commission's General Office on the launch of the second batch of pilot projects on appropriate technologies for myopia prevention, control, and treatment in children and adolescents[EB/OL]. (2021-10-09)[2022-03-03]. http://www.nhc.gov.cn/jkj/s7934td/202110/0fc8a001d42345d9ac9b38842b295fe7.shtml.
    [22] WU J F, BI H S, WANG S M, et al. Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong Children Eye Study[J]. PLoS One, 2013, 8(12): e82763. doi: 10.1371/journal.pone.0082763
    [23] HE X, SANKARIDURG P, XIONG S, et al. Prevalence of myopia and high myopia, and the association with education: Shanghai Child and Adolescent Large-scale Eye Study (SCALE): a cross-sectional study[J]. BMJ Open, 2021, 11(12): e048450. doi: 10.1136/bmjopen-2020-048450
    [24] LIU L, JIANG D, LI C, et al. Relationship between myopia progression and school entrance age: a 2.5-year longitudinal study[J]. J Ophthalmol, 2021, 2021: 7430576.
    [25] LIAO C, DING X, HAN X, et al. Role of parental refractive status in myopia progression: 12-year annual observation from the Guangzhou twin eye study[J]. Invest Ophthalmol Vis Sci, 2019, 60(10): 3499-3506. doi: 10.1167/iovs.19-27164
    [26] LI T, JIANG B, ZHOU X. Axial length elongation in primary school-age children: a 3-year cohort study in Shanghai[J]. BMJ Open, 2019, 9(10): e029896. doi: 10.1136/bmjopen-2019-029896
    [27] DIEZ P S, YANG L H, LU M X, et al. Growth curves of myopia-related parameters to clinically monitor the refractive development in Chinese schoolchildren[J]. Graefe Arch Clin Exp Ophthalmol, 2019, 257(5): 1045-1053. doi: 10.1007/s00417-019-04290-6
    [28] ITOI M, ITOI M. Axial length elongation in Japanese youth with myopia[J]. Eye Contact Lens, 2021, 47(2): 104-107.
    [29] ROZEMA J, DANKERT S, IRIBARREN R, et al. Axial growth and lens power loss at myopia onset in singaporean children[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3091-3099.
  • 加载中
表(3)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  130
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-04-16
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-09-25

目录

    /

    返回文章
    返回