Effects of environmental factors on refractive development of children and adolescents in different pubertal stages
-
摘要:
目的 探讨青春期对儿童青少年屈光发育的影响及其与户外活动、近距离用眼和电子产品使用的交互作用,为近视干预策略的制定提供参考。 方法 采用整群抽样从上海市某所九年一贯制学校选取776名7~13岁的儿童青少年参与研究,随访周期为2年(2015—2017年)。所有参与者每年进行1次睫状肌麻痹下屈光检查和眼轴测量,通过问卷调查和问询获取青春发育表征、日均户外时长、近距离用眼时长、电子产品使用时长等信息。采用广义估计方程分析不同青春期阶段屈光参数的影响因素及其交互效应。 结果 基线时有634名儿童青少年参与散瞳验光,其中350名近视(55.2%)。不同青春发育阶段眼轴长度进展、日均户外时长、近距离用眼时长和电子产品使用时长差异均有统计学意义(F值分别为4.10,4.25,5.54,9.20,P值均 < 0.05)。青春期阶段与日均户外时长对眼轴长度的影响存在交互作用(β=0.133,P<0.05),与近距离用眼时长、电子产品使用时长的交互作用无统计学意义(P值均>0.05)。 结论 青春期可能在中国儿童青少年户外时间与屈光发育之间的关系中起调节作用。 Abstract:Objective To explore the effect of puberty on refractive development of children and adolescents and its interaction with outdoor activities, near work and the use of electronic products, so as to provide a reference for strategies for intervening myopia. Methods Cluster sampling method was used to select 776 students aged 7-13 from a nine-year consistent school in Shanghai to participate and were followed up for 2 years. All participants underwent cycloplegic refraction and ocular axial length measurement once a year, as well as pubertal development, average daily outdoor time, near work time and time of electronic products usage. The influencing factors and interaction effects of refractive parameters in different puberty stages were analyzed by generalized estimation equation. Results At baseline, 634 children participated in cycloplegic refraction, of which 350 were myopic (55.2%). There were significant differences in axial length, average daily outdoor time, near work time and time of using electronic products at different stages of puberty (F=4.10, 4.24, 5.54, 9.20, P < 0.05). There was interaction between puberty and outdoor time on axial length development (β=0.133, P < 0.05), and the interaction between puberty and the time of near work or using electronic products was not statistically significant (P>0.05). Conclusion Puberty may play a regulatory role in the relationship between outdoor time and refractive development among Chinese children and adolescents. -
Key words:
- Puberty /
- Environment /
- Refraction, ocular /
- Child /
- Adolescent
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 不同青春发育阶段眼参数和环境因素分析(x±s)
Table 1. Analysis of ocular parameters and environmental factors at different puberty stages(x±s)
初潮或首次遗精 人数 眼轴长度/mm 等效球镜/D 日均户外活动时长/h 日均近距离用眼时长/h 日均电子产品使用时长/h 基线 2年随访 2年进展 基线 2年随访 2年进展 未发生组 403 23.87±1.10 24.51±1.21 0.63±0.34 -0.62±1.76 -1.56±2.08 -1.06±0.66 2.01±1.18 3.53±1.34 1.37±1.09 新发生组 143 24.24±0.96 24.79±1.00 0.55±0.30 -1.69±1.98 -2.86±2.16 -1.01±0.59 2.30±1.29 3.83±1.33 1.64±1.25 基线已发生组 83 24.59±1.21 25.15±1.24 0.56±0.32 -2.32±2.35 -3.73±2.44 -1.18±0.72 1.85±1.09 4.01±1.16 1.95±1.43 F值 17.93 11.40 4.10 36.82 29.95 1.06 4.24 5.54 9.20 P值 <0.01 <0.01 0.02 <0.01 <0.01 0.35 0.02 <0.01 <0.01 注:等效球镜在基线与2年随访变化比较P<0.05。 表 2 儿童青少年户外时间、青春期与眼轴长度和等效球镜的广义估计方程分析(n=776)
Table 2. Analysis of generalized estimation equations among outdoor time, puberty and axial length/spherical equivalence(n=776)
自变量 选项 眼轴长度/mm 等效球镜/D β值(β值95%CI) P值 β值(β值95%CI) P值 年龄 0.217(0.152~0.281) <0.01 -0.424(-0.543~-0.304) <0.01 性别 女 -0.643(-0.794~-0.491) <0.01 0.028(-0.278~0.333) 0.86 身高 0.011(0.002~0.020) 0.02 -0.011(-0.025~0.003) 0.12 父母近视 双方均近视 0.599(0.392~0.806) <0.01 -1.202(-1.625~-0.780) <0.01 一方近视 0.193(0.026~0.361) 0.02 -0.430(-0.763~-0.097) 0.01 日均户外活动时长/h -0.279(-0.352~-0.206) <0.01 0.483(0.350~0.616) <0.01 日均近距离用眼时长/h 0.045(-0.014~0.103) 0.14 -0.122(-0.242~-0.002) 0.05 日均电子产品使用时长/h 0.009(-0.061~0.080) 0.80 -0.010(-0.155~0.135) 0.89 是否发生初潮或首次遗精 是 -0.193(-0.530~0.143) 0.26 0.050(-0.666~0.765) 0.89 户外活动时长与青春发育交互作用 0.133(0.003~0.264) <0.05 -0.241(-0.517~0.036) 0.09 表 3 近距离用眼时长、青春期与眼轴长度和等效球镜的广义估计方程分析(n=776)
Table 3. Analysis of generalized estimation equations among near work time, puberty and axial length/spherical equivalence(n=776)
自变量 选项 眼轴长度/mm 等效球镜/D β值(β值95%CI) P值 β值(β值95%CI) P值 年龄 0.216(0.152~0.281) <0.01 -0.422(-0.542~-0.301) <0.01 性别 女 -0.650(-0.801~-0.499) <0.01 0.033(-0.271~0.338) 0.83 身高 0.011(0.002~0.020) 0.02 -0.011(-0.025~0.003) 0.11 父母近视 双方均近视 0.601(0.393~0.808) <0.01 -1.215(-1.638~-0.792) <0.01 一方近视 0.198(0.030~0.367) 0.02 -0.447(-0.783~-0.110) 0.01 日均户外活动时长/h -0.248(-0.315~-0.181) <0.01 0.434(0.300~0.569) <0.01 日均近距离用眼时长/h 0.043(-0.021~0.107) 0.19 -0.130(-0.260~0.000) 0.05 日均电子产品使用时长/h 0.006(-0.065~0.077) 0.87 -0.007(-0.153~0.139) 0.92 是否发生初潮或首次遗精 是 0.087(-0.407~0.581) 0.73 -0.661(-1.711~0.388) 0.22 近距离用眼时长与青春发育交互作用 0.000(-0.118~0.117) 0.99 0.055(-0.188~0.298) 0.66 表 4 电子产品使用时长、青春期与眼轴长度和等效球镜的广义估计方程分析(n=776)
Table 4. Analysis of generalized estimation equations among time of using electronic products, puberty and axial length/spherical equivalence(n=776)
自变量 选项 眼轴长度/mm 等效球镜/D β值(β值95%CI) P值 β值(β值95%CI) P值 年龄 0.217(0.153~0.282) <0.01 -0.419(-0.539~-0.298) <0.01 性别 女 -0.651(-0.802~-0.500) <0.01 0.030(-0.273~0.333) 0.85 身高 0.011(0.002~0.020) 0.02 -0.011(-0.025~0.003) 0.11 父母近视 双方均近视 0.600(0.392~0.808) <0.01 -1.212(-1.632~-0.791) <0.01 一方近视 0.197(0.028~0.365) 0.02 -0.448(-0.783~-0.113) 0.01 日均户外活动时长/h -0.247(-0.314~-0.179) <0.01 0.438(0.302~0.574) <0.01 日均近距离用眼时长/h 0.043(-0.017~0.102) 0.16 -0.116(-0.235~0.004) 0.06 日均电子产品使用时长/h -0.008(-0.090~0.075) 0.86 -0.074(-0.230~0.083) 0.36 是否发生初潮或首次遗精 是 0.016(-0.236~0.268) 0.90 -0.810(-1.382~-0.238) 0.01 电子产品使用时长与青春发育交互作用 0.040(-0.066~0.145) 0.46 0.211(-0.029~0.451) 0.09 -
[1] RESNIKOFF S, JONAS J B, FRIEDMAN D, et al. Myopia-A 21st century public health issue[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): Mi-Mii. doi: 10.1167/iovs.18-25983 [2] HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi: 10.1016/j.ophtha.2016.01.006 [3] NAIDOO K S, FRICKE T R, FRICK K D, et al. Potential lost productivity resulting from the global burden of myopia: systematic review, Meta-analysis, and modeling[J]. Ophthalmology, 2019, 126(3): 338-346. doi: 10.1016/j.ophtha.2018.10.029 [4] MORGAN I G, ROSE K A. Myopia: is the nature-nurture debate finally over?[J]. Clin Exp Optom, 2019, 102(1): 3-17. doi: 10.1111/cxo.12845 [5] COVILTIR V, BURCEL M, CHERECHEANU A P, et al. Update on myopia risk factors and microenvironmental changes[J]. J Ophthalmol, 2019, 2019: 4960852. [6] XIONG S, SANKARIDURG P, NADUVILATH T, et al. Time spent in outdoor activities in relation to myopia prevention and control: a Meta-analysis and systematic review[J]. Acta Ophthalmol, 2017, 95(6): 551-566. doi: 10.1111/aos.13403 [7] KU P W, STEPTOE A, LAI Y J, et al. The associations between near visual activity and incident myopia in children[J]. Ophthalmology, 2019, 126(2): 214-220. doi: 10.1016/j.ophtha.2018.05.010 [8] 孙丽丽, 齐丽丽, 季拓. 电子产品对学龄前及学龄初期儿童近视的相关性分析[J]. 国际眼科杂志, 2016, 16(2): 382-385. https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK201602056.htmSUN L L, QI L L, JI T. Correlation analysis of electronic products on myopia in preschool and early school-age children[J]. Inter J Ophthalmol, 2016, 16(2): 382-385 https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK201602056.htm [9] FOREMAN J, SALIM A T, PRAVEEN A, et al. Association between digital smart device use and myopia: a systematic review and Meta-analysis[J]. Lancet Digit Health, 2021, 3(12): e806-e818. doi: 10.1016/S2589-7500(21)00135-7 [10] MORGAN I G, WU P C, OSTRIN L A, et al. IMI risk factors for myopia[J]. Invest Ophthalmol Vis Sci, 2021, 62(5): 3. doi: 10.1167/iovs.62.5.3 [11] WOOD C L, LANE L C, CHEETHAM T. Puberty: normal physiology (brief overview)[J]. Best Pract Res Clin Endocrinol Metab, 2019, 33(3): 101265. doi: 10.1016/j.beem.2019.03.001 [12] YIP V C, PAN C W, LIN X Y, et al. The relationship between growth spurts and myopia in Singapore children[J]. Invest Ophthalmol Vis Sci, 2012, 53(13): 7961-7966. doi: 10.1167/iovs.12-10402 [13] LYU I J, KIM M H, BAEK S Y, et al. The association between menarche and myopia: findings from the Korean national health and nutrition examination, 2008-2012[J]. Invest Ophthalmol Vis Sci, 2015, 56(8): 4712-4718. doi: 10.1167/iovs.14-16262 [14] LEE Y Y, LO C T, SHEU S J, et al. Risk factors for and progression of myopia in young Taiwanese men[J]. Ophthalmic Epidemiol, 2015, 22(1): 66-73. doi: 10.3109/09286586.2014.988874 [15] DIRANI M, TONG L, GAZZARD G, et al. Outdoor activity and myopia in Singapore teenage children[J]. Br J Ophthalmol, 2009, 93(8): 997-1000. doi: 10.1136/bjo.2008.150979 [16] WU P C, TSAI C L, WU H L, et al. Outdoor activity during class recess reduces myopia onset and progression in school children[J]. Ophthalmology, 2013, 120(5): 1080-1085. doi: 10.1016/j.ophtha.2012.11.009 [17] 中国学生体质与健康研究组. 2014年中国学生体质与健康调研报告[M]. 北京: 高等教育出版社, 2016.Chinese Student Physique and Health Research Group. Investigation report on Chinese students' physique and health in 2014[M]. Beijing: Higher Education Press, 2016. [18] 季成叶. 现代儿童少年卫生学[M]. 北京: 人民卫生出版社, 2010.JI C Y. Modern children and adolescents hygiene[M]. Beijing: People's Medical Publishing House, 2010. [19] 谭晖, 余惠琴, 汪玲, 等. 儿童视力保健相关行为评定量表的编制及信效度检验[J]. 中国学校卫生, 2009, 30(11): 1007-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-XIWS200911026.htmTAN H, YU H Q, WANG L, et al. Development, reliability and validity of child vision care related behavior assessment scale[J]. Chin J Sch Health, 2009, 30(11): 1007-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-XIWS200911026.htm [20] 赵家良. 眼视光公共卫生学[M]. 北京: 人民卫生出版社, 2017: 105.ZHAO J L. Optometry public health[M]. Beijing: People's Medical Publishing House, 2017: 105 [21] NIRMALAN P K, KATZ J, ROBIN A L, et al. Female reproductive factors and eye disease in a rural South Indian population: the aravind comprehensive eye survey[J]. Invest Ophthalmol Vis Sci, 2004, 45(12): 4273-4276. doi: 10.1167/iovs.04-0285 [22] 代诚, 刘梦, 李宾中. 青少年晶状体形态与眼轴长度的关系[J]. 第三军医大学学报, 2021, 43(6): 6.DAI C, LIU M, LI B Z. Relationship between lens morphology and axial length in adolescents[J]. J Third Milit Med Univ, 2021, 43(6): 6. [23] HE M, FAN X, ZENG Y, et al. Effect of time spent outdoors at school on the development of myopia among children in china: a randomized clinical trial[J]. JAMA, 2015, 314(11): 1142-1148. doi: 10.1001/jama.2015.10803 [24] FRENCH A N. Increasing children's time spent outdoors reduces the incidence of myopia[J]. Evidence-based Med, 2016, 21(2): 76. doi: 10.1136/ebmed-2015-110321 [25] NORTON T T, SIEGWART J J. Light levels, refractive development, and myopia: a speculative review[J]. Exp Eye Res, 2013, 114: 48-57. doi: 10.1016/j.exer.2013.05.004 -

计量
- 文章访问数: 763
- HTML全文浏览量: 221
- PDF下载量: 77
- 被引次数: 0