留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类太阳光谱LED照明对儿童青少年视网膜血流灌注影响的随机对照临床试验

陈军 陈友三 王菁菁 杨金柳行 谢辉 杜林琳 张波 伍晓艳 何鲜桂 许建兴

陈军, 陈友三, 王菁菁, 杨金柳行, 谢辉, 杜林琳, 张波, 伍晓艳, 何鲜桂, 许建兴. 类太阳光谱LED照明对儿童青少年视网膜血流灌注影响的随机对照临床试验[J]. 中国学校卫生, 2022, 43(3): 338-340. doi: 10.16835/j.cnki.1000-9817.2022.03.005
引用本文: 陈军, 陈友三, 王菁菁, 杨金柳行, 谢辉, 杜林琳, 张波, 伍晓艳, 何鲜桂, 许建兴. 类太阳光谱LED照明对儿童青少年视网膜血流灌注影响的随机对照临床试验[J]. 中国学校卫生, 2022, 43(3): 338-340. doi: 10.16835/j.cnki.1000-9817.2022.03.005
CHEN Jun, CHEN Yousan, WANG Jingjing, YANG Jinliuxing, XIE Hui, DU Linlin, ZHANG Bo, WU Xiaoyan, HE Xiangui, XU Jianxing. Effects of sunlike spectrum LED illumination on retinal blood perfusion in children and adolescents: a randomized controlled trial[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2022, 43(3): 338-340. doi: 10.16835/j.cnki.1000-9817.2022.03.005
Citation: CHEN Jun, CHEN Yousan, WANG Jingjing, YANG Jinliuxing, XIE Hui, DU Linlin, ZHANG Bo, WU Xiaoyan, HE Xiangui, XU Jianxing. Effects of sunlike spectrum LED illumination on retinal blood perfusion in children and adolescents: a randomized controlled trial[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2022, 43(3): 338-340. doi: 10.16835/j.cnki.1000-9817.2022.03.005

类太阳光谱LED照明对儿童青少年视网膜血流灌注影响的随机对照临床试验

doi: 10.16835/j.cnki.1000-9817.2022.03.005
基金项目: 

上海市卫生健康委员会青年课题项目 20214Y0424

上海市公共卫生体系建设三年行动计划(2020-2022) GWV-9.1

国家自然科学基金项目 82003562

详细信息
    作者简介:

    陈军(1989-), 男, 安徽合肥人, 博士, 公卫医师, 主要从事儿童青少年近视防控和眼科相关临床研究工作

    通讯作者:

    许建兴, E-mail: xujx@leedarson.com

  • 利益冲突声明   所有作者声明无利益冲突。
  • 中图分类号: R181.3  R179  R770.41

Effects of sunlike spectrum LED illumination on retinal blood perfusion in children and adolescents: a randomized controlled trial

  • 摘要:   目的  分析类太阳光谱发光二极管(LED)照明对视网膜血流灌注影响, 探索类太阳光谱LED照明与儿童青少年眼健康指标的相关性。  方法  在上海市眼病防治中心和线上平台发放研究招募贴, 招募适龄学生。采取随机对照双盲设计, 对照组(11人)为普通LED台灯、试验组(12人)为类太阳光谱LED台灯, 与太阳光谱拟合度分别为87%和95%。采用两独立样本t检验和多元线性回归模型比较两组试验前后视网膜血流灌注改变量。  结果  近距离阅读1 h后, 普通LED台灯组受试者视网膜浅层和深层毛细血管密度均有下降(浅层: -3.05±2.04, P<0.01;深层: -4.03 ±4.94, P=0.02), 类太阳光谱LED台灯组视网膜浅层毛细血管密度未见明显降低(浅层: -0.59±1.44, P=0.18;深层: -0.49±4.27, P=0.70)。多元回归分析发现, 类太阳光谱LED照明相比普通LED照明可明显缓解视网膜浅层和深层毛细血管密度下降(β=2.83, 95%CI=1.54~4.12, P<0.01;β=4.21, 95%CI=0.58~7.84, P=0.02)。  结论  类太阳光谱LED照明可缓解儿童青少年近距离用眼时引起的视网膜血流灌注降低, 可能延缓近视发生发展, 未来近视防控工作需要关注人工照明的光谱功率分布。
    1)  利益冲突声明   所有作者声明无利益冲突。
  • 表  1  两组血流密度及其他眼科相关指标实验前后改变情况比较(x±s)

    Table  1.   Comparison of blood flow density and other ophthalmic related indexes between intervention and control groups(x±s)

    组别 人数 视网膜浅层毛细血管改变量/% 视网膜深层毛细血管密度改变量/% 脉络膜毛细血管密度改变量/% 双眼调节灵敏度/cpm 视疲劳评分
    试验组 12 -0.59±1.44 -0.49±4.27 0.25±0.42 0.42±1.72 1.42±2.02
    对照组 11 -3.05±2.04 -4.03±4.94 -0.02±0.97 1.86±3.19 0.40±1.51
    统计值 3.37* 1.85* 0.87* -1.37* 1.31*
    P <0.01 0.08 0.40 0.18 0.20
    组别 人数 视力 等效球镜/D 眼压/mm Hg 泪膜破裂时间/s 泪河高度/mm
    试验组 12 -0.10±0.29 0.04±0.14 0.25±2.38 -0.39±5.03 0.01±0.05
    对照组 11 -0.02±0.14 0.05±0.19 0.55±2.02 0.14±3.18 0.01±0.04
    统计值 -1.02* 134.00** 107.00** 116.00** 0.70*
    P 0.32 0.92 0.13 0.97 0.49
    注: 1 mm Hg=0.133 kPa。*为t检验,**为独立样本秩和检验。
    下载: 导出CSV
  • [1] BAIRD P N, SAW S M, LANCA C, et al. Myopia[J]. Nat Rev Dis Primers, 2020, 6(1): 99. doi: 10.1038/s41572-020-00231-4
    [2] JONAS J B. Myopia: epidemiology, anatomy and prevention of myopia and treatment options for progressive myopia in childhood[J]. Ophthalmologe, 2019, 116(6): 498. doi: 10.1007/s00347-019-0891-5
    [3] HE M, XIANG F, ZENG Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial[J]. JAMA, 2015, 314(11): 1142-1148. doi: 10.1001/jama.2015.10803
    [4] JONAS J B, ANG M, CHO P, et al. IMI prevention of myopia and its progression[J]. Invest Ophthalmol Vis Sci, 2021, 62(5): 6. doi: 10.1167/iovs.62.5.6
    [5] TAYLOR C P, SHEPARD T G, RUCKER F J, et al. Sensitivity to s-cone stimuli and the development of myopia[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4622-4630. doi: 10.1167/iovs.18-24113
    [6] RUCKER F. Monochromatic and white light and the regulation of eye growth[J]. Exp Eye Res, 2019, 184: 172-182. doi: 10.1016/j.exer.2019.04.020
    [7] JIANG Y, ZHU Z, TAN X, et al. Effect of repeated low-level red-light therapy in myopia control in children: a multicenter randomized controlled trial[J]. Ophthalmology, 2021. DOI: 10.1016/j.ophtha.2021.11.023.
    [8] THAKUR S, DHAKAL R, VERKICHARLA P K. Short-term exposure to blue light shows an inhibitory effect on axial elongation in human eyes independent of defocus[J]. Invest Ophthalmol Vis Sci, 2021, 62(15): 22. doi: 10.1167/iovs.62.15.22
    [9] 陈灿, 蓝卫忠, 林丽霞, 等. 全光谱光照对体外培养的人视网膜色素上皮细胞分泌多巴胺功能的影响[J]. 中华眼视光学与视觉科学杂志, 2011, 13(5): 328-331. doi: 10.3760/cma.j.issn.1674-845X.2011.05.002

    CHEN C, LAN W Z, LIN L X, et al. Effect of full spectral light irradiation on the dopamine secretion of cultured human retinal pigment epithelial cells invitro[J]. Chin J Opt Ophthalmol Vis Sci, 2011, 13(5): 328-311. doi: 10.3760/cma.j.issn.1674-845X.2011.05.002
    [10] MURALIDHARAN A R, LANCA C, BISWAS S, et al. Light and myopia: from epidemiological studies to neurobiological mechanisms[J]. Ther Adv Ophthalmol, 2021, 13: 970355154.
    [11] BAEZA-MOYANO D, GONZLEZ-LEZCANO R A. Pandemic of childhood myopia. could new indoor LED lighting be part of the solution?[J]. Energies, 2021, 14(13): 3827. doi: 10.3390/en14133827
    [12] 中国电子视像行业协会. 视疲劳测试与评价方法第2部分: 量表评价方法: T/CVIA-73-2019[S]. 2019-07-19.

    China Electronic Video Industry Association. Testing and evaluation method of vision fatigue Part 2: scale evaluation method: T/CVIA-73-2019[S]. 2019-07-19.
    [13] PAN C W, WU R K, LIU H, et al. Types of lamp for homework and myopia among Chinese school-aged children[J]. Ophthalmic Epidemiol, 2018, 25(3): 250-256. doi: 10.1080/09286586.2017.1420204
    [14] NAJJAR R P, CHAO D L B J, BARATHI V A, et al. Ocular growth and metabolomics are dependent upon the spectral content of ambient white light[J]. Sci Rep, 2021, 11(1): 7586. doi: 10.1038/s41598-021-87201-2
    [15] WATTS N S, TAYLOR C, RUCKER F J. Temporal color contrast guides emmetropization in chick[J]. Exp Eye Res, 2021, 202: 108331. doi: 10.1016/j.exer.2020.108331
    [16] ZHAO Z C, ZHOU Y, TAN G, et al. Research progress about the effect and prevention of blue light on eyes[J]. Int J Ophthalmol, 2018, 11(12): 1999-2003.
    [17] NAKAMURA M, KUSE Y, TSURUMA K, et al. The involvement of the oxidative stress in murine blue LED light-induced retinal damage model[J]. Biol Pharm Bull, 2017, 40(8): 1219-1225. doi: 10.1248/bpb.b16-01008
    [18] GAWNE T J, SIEGWART J J, WARD A H, et al. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews[J]. Exp Eye Res, 2017, 155: 75-84. doi: 10.1016/j.exer.2016.12.004
    [19] GUPTA S K, CHAKRABORTY R, VERKICHARLA P K. Electroretinogram responses in myopia: a review[J]. Doc Ophthalmol, 2021. DOI: 10.1007/s10633-021-09857-5.
    [20] LIU Y, WANG L, XU Y, et al. The influence of the choroid on the onset and development of myopia: from perspectives of choroidal thickness and blood flow[J]. Acta Ophthalmol, 2021, 99(7): 730-738. doi: 10.1111/aos.14773
    [21] WOOD L J, JOLLY J K, BUCKLEY T M, et al. Low luminance visual acuity as a clinical measure and clinical trial outcome measure: a scoping review[J]. Ophthalmic Physiol Opt, 2021, 41(2): 213-223. doi: 10.1111/opo.12775
  • 加载中
表(1)
计量
  • 文章访问数:  701
  • HTML全文浏览量:  236
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-28
  • 修回日期:  2022-02-18
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-03-25

目录

    /

    返回文章
    返回