Modification effect of overweight and obesity on the association between short-term PM2.5 exposure and high blood pressure in adolescents
-
摘要:
目的 分析PM2.5短期暴露与青少年血压偏高关联及其超重肥胖修饰效应,为学校对学生健康进行精细化管理和科学防护空气污染危害提供相关依据。 方法 选取2017—2018年北京市中学生年度健康体检数据中数据合格的初一、高一共148 956名学生为研究对象; 采用反距离加权插值法得出研究对象所处区域的气象要素与空气质量; 采用线性混合效应模型估计PM2.5短期暴露对收缩压、舒张压7 d内的累积滞后效应,并分析超重肥胖对PM2.5短期暴露与青少年血压偏高关联的修饰效应。 结果 2017年9月1日至2018年6月30日,北京市PM2.5平均质量体积浓度为(56.53±45.85)μg/m3; 研究对象超重肥胖检出率为34.22%,血压偏高检出率为8.03%。超重肥胖组PM2.5对收缩压的累积滞后效应lag07时最大,即PM2.5日均质量体积浓度每增长10 μg/m3与青少年收缩压偏高相关(OR=1.05,95%CI=1.03~1.07);非超重肥胖组PM2.5对收缩压的累积滞后效应lag05时最大,即PM2.5日均质量体积浓度每增长10 μg/m3与青少年收缩压偏高相关(OR=1.04,95%CI=1.02~1.06)。PM2.5短期暴露不对青少年舒张压偏高造成影响。超重肥胖的青少年对PM2.5短期暴露引起的血压偏高易感性在累积滞后3日内(lag01~lag03)更高。 结论 PM2.5短期暴露与青少年血压具有正相关,且存在滞后效应,超重肥胖青少年在PM2.5短期暴露后血压偏高更显著。 Abstract:Objective To analyze the association between short-term PM2.5 exposure and high blood pressure in adolescents and its modification effect of overweight and obesity, and to provide a reference for the refined management of students' physical health and the scientific prevention and controlling of air pollution. Methods A total of 148 956 junior high school students and senior high school students who passed the annual physical examination data of middle school students in Beijing from 2017 to 2018 were selected; The inverse distance weighted interpolation method was used to get the meteorological elements and air quality of the research area; Linear mixed effect model was used to estimate the cumulative lag effect of short-term PM2.5 exposure on systolic and diastolic blood pressure within 7 days, and analyze the modification effect of overweight and obesity on the association between short-term PM2.5 exposure and high blood pressure in adolescents. Results From September 1, 2017 to June 30, 2018, the average concentration of PM2.5 was (56.53±45.85)μg/m3; The detection rate of overweight and obesity was 34.22%, and the detection rate of high blood pressure was 8.03%. The cumulative lag effect of PM2.5 on systolic blood pressure in overweight and obesity group was the largest at lag07, that is, the daily average concentration of PM2.5 increased by 10 μg/m3 was significantly correlated with higher systolic blood pressure (OR=1.05, 95%CI=1.03-1.07); the cumulative lag effect of PM2.5 on systolic blood pressure in non overweight and obese group was the largest at lag05, that is, the daily average concentration of PM2.5 increased by 10 μg/m3 was significantly correlated with higher systolic blood pressure (OR=1.04, 95%CI=1.02-1.06). Short-term exposure to PM2.5 did not affect the high diastolic blood pressure in adolescents. Overweight and obese adolescents were more susceptible to high blood pressure caused by short-term PM2.5 exposure within 3 days of cumulative lag (lag01-lag03). Conclusion The short-term exposure of PM2.5 has a significant positive correlation with adolescent blood pressure, and shows a lag effect. Overweight and obese adolescents have higher blood pressure after PM2.5 short-term exposure. -
Key words:
- Overweight /
- Obesity /
- Particulate matter /
- Blood pressure /
- Adolescent
1) 利益冲突声明 所有作者声明无利益冲突。 -
表 1 PM2.5短期暴露与青少年血压效应值的关联[β值(β值95%CI)]
Table 1. Correlation between short-term PM2.5 exposure and systolic blood pressure effect in adolescents[β(β 95%CI)]
血压 组别 人数 lag0 lag01 lag02 lag03 收缩压 超重肥胖组 50 976 0.03(0.01~0.06) 0.07(0.04~0.10) 0.10(0.06~0.13) 0.12(0.08~0.16) 非超重肥胖组 97 980 0.02(0.00~0.04) 0.04(0.02~0.06) 0.07(0.04~0.09) 0.07(0.05~0.10) 舒张压 超重肥胖组 50 976 0.01(-0.01~0.02) 0.01(-0.01~0.03) -0.02(-0.04~0.01) -0.04(-0.07~-0.02) 非超重肥胖组 97 980 -0.01(-0.02~0.00) -0.01(-0.02~0.00) -0.01(-0.03~0.00) -0.04(-0.05~-0.02) 血压 组别 人数 lag04 lag05 lag06 lag07 收缩压 超重肥胖组 50 976 0.17(0.12~0.22) 0.23(0.17~0.28) 0.22(0.16~0.27) 0.22(0.16~0.27) 非超重肥胖组 97 980 0.12(0.09~0.16) 0.20(0.16~0.23) 0.18(0.14~0.21) 0.14(0.10~0.18) 舒张压 超重肥胖组 50 976 -0.05(-0.08~-0.01) -0.02(-0.06~0.01) -0.03(-0.06~0.01) -0.03(-0.06~0.01) 非超重肥胖组 97 980 -0.03(-0.05~-0.01) 0.00(-0.02~0.02) -0.01(-0.04~0.01) -0.02(-0.05~0.00) 表 2 PM2.5短期暴露与青少年血压偏高的关联[OR值(OR值95%CI)]
Table 2. Association between short-term PM2.5 exposure and high blood pressure in adolescents[OR(OR 95%CI)]
血压 组别 人数 lag0 lag01 lag02 lag03 收缩压 超重肥胖组 50 976 1.00(1.00~1.01) 1.01(1.00~1.02) 1.03(1.01~1.04) 1.03(1.02~1.05) 非超重肥胖组 97 980 1.01(1.00~1.02) 1.01(1.00~1.02) 1.02(1.00~1.03) 1.02(1.00~1.04) 舒张压 超重肥胖组 50 976 1.00(0.98~1.01) 1.00(0.99~1.02) 1.00(0.98~1.02) 0.99(0.97~1.01) 非超重肥胖组 97 980 1.00(0.98~1.01) 1.00(0.98~1.02) 0.99(0.97~1.01) 0.98(0.96~1.01) 血压偏高 超重肥胖组 50 976 1.00(0.99~1.01) 1.01(1.00~1.02) 1.02(1.01~1.03) 1.02(1.01~1.04) 非超重肥胖组 97 980 1.01(1.00~1.01) 1.01(1.00~1.02) 1.01(1.00~1.03) 1.01(1.00~1.03) 血压 组别 人数 lag04 lag05 lag06 lag07 收缩压 超重肥胖组 50 976 1.04(1.02~1.06) 1.04(1.02~1.06) 1.04(1.03~1.06) 1.05(1.03~1.07) 非超重肥胖组 97 980 1.04(1.02~1.06) 1.04(1.02~1.06) 1.03(1.01~1.05) 1.03(1.01~1.05) 舒张压 超重肥胖组 50 976 0.98(0.96~1.01) 0.99(0.96~1.01) 0.99(0.96~1.01) 0.99(0.96~1.02) 非超重肥胖组 97 980 1.00(0.97~1.03) 1.01(0.98~1.05) 1.01(0.98~1.04) 1.00(0.97~1.04) 血压偏高 超重肥胖组 50 976 1.03(1.01~1.04) 1.03(1.01~1.05) 1.03(1.01~1.05) 1.04(1.02~1.06) 非超重肥胖组 97 980 1.03(1.01~1.05) 1.03(1.01~1.05) 1.03(1.01~1.05) 1.02(1.00~1.04) -
[1] 马淑婧, 羊柳, 赵敏, 等. 1991—2015年中国儿童青少年血压水平及高血压检出率的变化趋势[J]. 中华流行病学杂志, 2020, 41(2): 178-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ202102031.htmMA S J, YANG L, ZHAO M, et al. Change trend of blood pressure level and detection rate of hypertension in Chinese children and adolescents from 1991 to 2015[J]. Chin J Epidemiol, 2020, 41(2): 178-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ202102031.htm [2] CHEN X, WANG Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis[J]. Circulation, 2008, 117(25): 3171-3180. doi: 10.1161/CIRCULATIONAHA.107.730366 [3] REDWINE K M, ACOSTA A A, POFFENBARGER T, et al. Development of hypertension in adolescents with pre-hypertension[J]. J Pediatr, 2012, 160(1): 98-103. doi: 10.1016/j.jpeds.2011.07.010 [4] LAUER R M, CLARKE W R. Childhood risk factors for high adult blood pressure: the muscatine study[J]. Pediatrics, 1989, 84(4): 633-641. doi: 10.1542/peds.84.4.633 [5] DANIELS S R, LOGGIE J M, KHOURY P, et al. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension[J]. Circulation, 1998, 97(19): 1907-1911. doi: 10.1161/01.CIR.97.19.1907 [6] LITWIN M, NIEMIRSKA A, SLADOWSKA J, et al. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension[J]. Pediatr Nephrol (Berlin, Germany), 2006, 21(6): 811-819. doi: 10.1007/s00467-006-0068-8 [7] 董彦会, 邹志勇, 王政和, 等. 中国2014年7~18岁儿童青少年血压偏高流行的区域分析[J]. 中华流行病学杂志, 2017, 38(7): 931-937. doi: 10.3760/cma.j.issn.0254-6450.2017.07.017DONG Y H, ZOU Z Y, WANG Z H, et al. Regional analysis on prevalence of high blood pressure in children and adolescents aged 7-18 in China in 2014[J]. Chin J Epidemiol, 2017, 38(7): 931-937. doi: 10.3760/cma.j.issn.0254-6450.2017.07.017 [8] RILEY M, HERNANDEZ A K, KUZNIA A L. High blood pressure in children and adolescents[J]. Am Famphysic, 2018, 98(8): 486-494. [9] JUNG C C, SU H J, LIANG H H. Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index[J]. Sci Total Environ, 2016, 539: 271-276. doi: 10.1016/j.scitotenv.2015.08.158 [10] WEICHENTHAL S, HOPPIN J A, REEVES F. Obesity and the cardiovascular health effects of fine particulate air pollution[J]. Obesity (Silver Spring, Md), 2014, 22(7): 1580-1589. doi: 10.1002/oby.20748 [11] HUANG W, ZHU T, PAN X, et al. Air pollution and autonomic and vascular dysfunction in patients with cardiovascular disease: interactions of systemic inflammation, overweight, and gender[J]. Am J Epidemiol, 2012, 176(2): 117-126. doi: 10.1093/aje/kwr511 [12] 国家卫生健康委员会. 7~18岁儿童青少年血压偏高筛查界值: WS/T 610—2018[S]. 2018-06-13.National Health Commission of the PRC. Reference of screening for elevated bload pressure among children and adolescents age 7-18 years: WS/T 610-2018[S]. 2018-06-13. [13] 国家卫生健康委员会. 学龄儿童青少年超重与肥胖筛查: WS/T 586—2018[S]. 2018-02-23.National Health Commission of the PRC. Screening for overweight and obesity among school-age and adolescents: WS/T 586-2018[S]. 2018-02-23. [14] HUANG W, WANG L, LI J, et al. Short-term blood pressure responses to ambient fine particulate matter exposures at the extremes of global air pollution concentrations[J]. Am J Hypert, 2018, 31(5): 590-599. doi: 10.1093/ajh/hpx216 [15] ISHⅡ M, SEKI T, SAKAMOTO K, et al. Association of short term exposure to Asian dust with increased blood pressure[J]. Sci Rep, 2020, 10(1): 17630. doi: 10.1038/s41598-020-74713-6 [16] XU N, LYU X, YU C, et al. The association between short-term exposure to extremely high level of ambient fine particulate matter and blood pressure: a panel study in Beijing, China[J]. Environ Sci Poll Res Intern, 2020, 27(22): 28113-28122. doi: 10.1007/s11356-020-09126-z [17] HU J, FU H, SHEN H, et al. Does underweight amplify the relationship between short-term particulate matter exposure and blood pressure in children and adolescents: a large cross-sectional study in a metropolis of China[J]. Environsci Poll Res Intern, 2020, 27(34): 42449-42459. doi: 10.1007/s11356-020-10215-2 [18] YANG H B, TENG C G, HU J, et al. Short-term effects of ambient particulate matter on blood pressure among children and adolescents: a cross-sectional study in a city of Yangtze River Delta, China[J]. Chemosphere, 2019, 237: 124510. doi: 10.1016/j.chemosphere.2019.124510 [19] 徐文玺, 陈仁杰, 阚海东. PM2.5对上海市城区某社区居民血压影响的定组研究[J]. 中华预防医学杂志, 2016, 50(8): 716-720. doi: 10.3760/cma.j.issn.0253-9624.2016.08.009XU W X, CHEN R J, KAN H D. A cohort study on the effect of PM2.5 on blood pressure in a community in Shanghai[J]. Chin J Prev Med, 2016, 50(8): 716-720. doi: 10.3760/cma.j.issn.0253-9624.2016.08.009 [20] GIORGINI P, DI GIOSIA P, GRASSI D, et al. Air pollution exposure and blood pressure: an updated review of the literature[J]. Curr Pharmac Design, 2016, 22(1): 28-51. http://www.onacademic.com/detail/journal_1000040520478410_c8ac.html [21] BENNETT W D, ZEMAN K L. Effect of body size on breathing pattern and fine-particle deposition in children[J]. J Appl Physiol (Bethesda, Md: 1985), 2004, 97(3): 821-826. doi: 10.1152/japplphysiol.01403.2003 [22] DUBOWSKY S D, SUH H, SCHWARTZ J, et al. Diabetes, obesity, and hypertension may enhance associations between air pollution and markers of systemic inflammation[J]. Environ Health Perspect, 2006, 114(7): 992-998. doi: 10.1289/ehp.8469 -

计量
- 文章访问数: 455
- HTML全文浏览量: 267
- PDF下载量: 25
- 被引次数: 0