The influence of air pollution on the health of primary school students
-
摘要:
目的 了解大气污染物浓度增高对学龄儿童疾病、症状和因病缺课产生的影响,为防止大气污染对学生健康的危害提供参考。 方法 于2014—2017年每年冬季,对杭州某小学792名四年级学生进行健康问卷调查,每日连续开展发病和症状监测。采用基于Pearson回归的广义相加模型分析单污染物浓度增高引起的健康影响,多因素Logistic回归模型分析家庭、居住环境与大气污染物浓度增加对学生健康的综合影响。 结果 415名(52.4%)小学生有既往病史,265名(33.5%)有过敏史。调查期间,PM2.5、PM10、SO2和NO2的平均质量体积浓度分别为(81.0±2.8)(122.2±3.9)(17.9±0.6)(68.9±1.4)μg/m3。PM2.5、PM10和NO2滞后3 d时对学生发生疾病和因病缺课的影响最为明显,各污染物每增加10 μg/m3,发生疾病风险RR值分别为1.02(1.01~1.02),1.04(1.03~1.06)和1.03(1.02~1.04)。SO2滞后5 d对学生健康影响最为显著。父亲本科及以上文化水平与小学生冬季发生疾病(OR=0.83)和症状(OR=0.84)呈负相关;1年内家具更换(OR=1.78)、宠物饲养(OR=1.94)、1年内反复呼吸道感染(OR=1.82)、1年前过敏性鼻炎(OR=2.24)、冠心病/高血压家族史(OR=1.46)、室内活动时间(OR=1.02)、大气PM10浓度(OR=1.09)与小学生冬季产生症状呈正相关(P值均 < 0.05)。 结论 大气污染物浓度增高对小学生发生疾病、症状以及因病缺课有影响且存在滞后效应。父亲本科及以上文化水平是学生健康的保护因素,室内环境污染和室外大气污染均可导致学生疾病和症状的发生。 Abstract:Objective To investigate the effects of ambient air pollution on the school-age children's diseases, symptoms and school absence, and to provide a reference for preventing the harmful effect of air pollution on students. Methods Health questionnaires surveys were conducted among 792 students of the fourth grade in a primary school in Hangzhou, and the incidence of diseases and symptoms were continuously monitored every day during the winter of 2014-2017. The generalized additive model based on Poisson regression was used to analyze the health effects caused by single pollution. The multivariate Logistic regression model was used to analyze the comprehensive effects of family, living environment and air pollution on student health. Results Totally 415 students(52.4%) had a history of diseases and 265 students(33.5%) had a history of allergy. During the investigation, the average concentrations of PM2.5, PM10, SO2 and NO2 were (81.0±2.8) (122.2±3.9) (17.9±0.6) and (68.9±1.4)μg/m3. Strongest associations were found for lag 3 day of exposure among PM2.5, PM10 and NO2 on illness and absence. Increases of 10 μg/m3 in PM2.5, PM10 and NO2 were associated with 1.02(95%CI=1.01-1.02), 1.04(95%CI=1.03-1.06) and 1.03(95%CI=1.02-1.04) increases in daily illness rates. SO2 lag for 5 days had the most significant effect on students' health. Father's education was the protective factor for illness (OR=0.83) and symptoms(OR=0.84). The risk factors for symptoms included furniture replacement within one year(OR=1.78), pet feeding(OR=1.94), respiratory infections within one year(OR=1.82), allergies rhinitis(OR=2.24), family history with coronary heart disease/hypertension(OR=1.46), indoor activity time (OR=1.02) and atmospheric PM10 concentration(OR=1.09)(P < 0.05). Conclusion The increase of air pollution concentration has an impact on the illness, symptoms and absence from school, and there is a lag effect. Father's education is a protective factor for the health of students. Indoor pollution and outdoor air pollution can lead to the occurrence of illness and symptoms. -
Key words:
- Air pollution /
- Health status /
- Regression analysis /
- Students
-
表 1 杭州市2014—2017年气象指标和大气污染物的相关性(r值,n=188)
Table 1. Correlation between meteorological indicators and air pollution during 2014-2017(r, n=188)
指标 平均相对湿度 日平均风速 PM2.5 PM10 SO2 NO2 平均温度 0.58* 0.00 0.06 -0.01 -0.22* 0.07 平均相对湿度 -0.09 -0.03 -0.18* -0.44* -0.08 日平均风速 -0.35* -0.40* -0.14 -0.54* PM2.5 0.94* 0.46* 0.64* PM10 0.53* 0.67* SO2 0.32* 注:*P < 0.05。 表 2 杭州市大气污染物浓度对小学生健康影响的滞后效应[RR值(RR值95%CI),n=792]
Table 2. Lag effect of air pollution on primary school students' health in Hangzhou[RR(RR 95%CI), n=792]
污染物 滞后天数/d 疾病 症状 因病缺课 PM2.5 0 0.99(0.99~1.00)* 0.99(0.99~0.99)* 0.99(0.98~0.99)* 1 1.00(0.99~1.00) 0.99(0.98~0.99)* 0.98(0.97~0.99)* 2 1.01(1.01~1.02)* 1.00(1.00~1.01) 1.00(0.99~1.02) 3 1.02(1.01~1.02)* 1.01(1.00~1.01)* 1.02(1.01~1.03)* 4 1.02(0.98~1.07) 0.97(0.94~1.01) 1.02(0.94~1.12) 5 1.00(0.99~1.00) 1.00(0.99~1.00) 1.00(1.00~1.01) 6 1.00(1.00~1.01) 1.01(1.00~1.01)* 1.01(1.00~1.02) PM10 0 1.00(0.99~1.00) 0.99(0.98~0.99)* 0.97(0.96~0.99)* 1 1.02(1.01~1.04)* 0.99(0.98~1.00)* 1.00(0.98~1.03) 2 1.02(1.01~1.03)* 0.99(0.98~1.00)* 1.00(0.97~1.02) 3 1.04(1.03~1.06)* 1.01(1.00~1.02)* 1.04(1.02~1.07)* 4 1.39(0.66~2.95) 0.64(0.33~1.16) 1.48(0.34~6.37) 5 0.98(0.96~0.93)* 0.97(0.95~0.98)* 0.97(0.94~1.00) 6 1.02(1.00~1.03)* 0.98(0.98~0.99)* 1.00(0.98~1.02) SO2 0 0.95(0.92~0.97)* 0.94(0.92~0.96)* 0.91(0.97~0.95)* 1 0.97(0.93~1.00) 0.91(0.88~0.94)* 0.86(0.79~0.93)* 2 1.02(0.98~1.06) 0.94(0.91~0.98)* 0.96(0.89~1.04) 3 1.10(1.00~1.17)* 1.05(0.99~1.10) 1.15(1.01~1.31)* 4 1.09(0.90~1.31) 0.89(0.77~1.04) 1.10(0.70~1.59) 5 1.31(1.14~1.50)* 1.21(1.08~1.35)* 1.52(1.17~1.97)* 6 0.95(0.88~1.03) 0.83(0.77~0.89)* 0.80(0.68~0.94) NO2 0 0.99(0.98~0.99)* 0.99(0.98~0.99)* 0.98(0.97~0.99)* 1 1.01(1.00~1.02) 0.97(0.96~0.98)* 0.98(0.96~1.00) 2 1.02(1.01~1.03)* 1.02(1.01~1.02)* 1.02(1.01~1.04)* 3 1.03(1.02~1.04)* 1.00(1.00~1.01) 1.03(1.02~1.05)* 4 0.92(0.76~1.11) 1.12(0.96~1.30) 0.91(0.63~1.31) 5 0.99(0.98~1.00)* 0.99(0.99~1.00)* 1.00(0.98~1.01) 6 1.00(0.99~1.01) 1.01(1.01~1.02)* 1.01(0.99~1.02) 注:*P < 0.05。 表 3 杭州市多污染物及影响因素对小学生疾病与症状效应分析(n=792)
Table 3. Effect of multiple pollution and influencing factors on diseases and symptoms(n=792)
影响因素 疾病 症状 OR值(OR值95%CI) P值 OR值(OR值95%CI) P值 父亲文化本科及以上 0.83(0.69~0.99) 0.04 0.84(0.71~0.98) 0.03 1年内家具更换 - - 1.78(1.05~3.02) 0.03 宠物饲养 - - 1.94(1.20~3.14) 0.01 1年内反复呼吸道感染 2.06(1.31~3.23) < 0.01 1.82(1.13~2.93) 0.01 1年前过敏性鼻炎 2.48(1.69~3.66) < 0.01 2.24(1.51~3.31) < 0.01 冠心病/高血压家族史 - - 1.46(1.06~2.01) 0.02 室内活动时间 - - 1.02(1.00~1.05) 0.03 PM10 1.01(1.00~1.02) 0.01 1.09(1.07~1.11) < 0.01 NO2 1.03(1.01~1.04) 0.01 0.90(0.87~0.92) < 0.01 注:变量赋值包括父亲文化程度(本科以下=0,本科及以上=1);1年内家具更换、宠物饲养、1年内反复呼吸道感染、1年前过敏性鼻炎、冠心病/高血压家族史(否=0,是=1);室内活动时间、PM10、NO2为连续变量。 -
[1] LI M, ZHANG L. Haze in China: current and future challenges[J]. Environ Pollut, 2014, 189(1): 85-86. http://www.onacademic.com/detail/journal_1000035690852810_63b1.html [2] LIU C, CHEN R, SERA F, et al. Ambient particulate air pollution and daily mortality in 652 cities[J]. N Engl J Med, 2019, 381(8): 705-715. doi: 10.1056/NEJMoa1817364 [3] YUAN S, WANG J, JIANG Q, et al. Long-term exposure to PM2.5 and stroke: a systematic review and meta-analysis of cohort studies[J]. Environ Res, 2019, 177: 108587. doi: 10.1016/j.envres.2019.108587 [4] DI Q, WANG Y, ZANOBETTI A, et al. Air pollution and mortality in the medicare population[J]. N Engl J Med, 2017, 376(26): 2513-2522. doi: 10.1056/NEJMoa1702747 [5] VAN DONKELAAR A, MARTIN R V, BRAUER M, et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application[J]. Environ Health Perspect, 2010, 118(6): 847-855. doi: 10.1289/ehp.0901623 [6] WHO. Ambient air pollution: a global assessment of exposure and burden of disease[R]. Geneva: WHO, 2016. [7] 阚海东, 施小明. 我国大气污染与人群健康关系研究进展[J]. 中华预防医学杂志, 2019, 53(1): 4-9. doi: 10.3760/cma.j.issn.0253-9624.2019.01.002KAN H D, SHI X M. Research progress of ambient air pollution and human health in China[J]. Chin J Prev Med, 2019, 53(1): 4-9. doi: 10.3760/cma.j.issn.0253-9624.2019.01.002 [8] ZHANG L, MORISAKI H, WEI Y, et al. Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children[J]. Environ Pollut, 2019, 255(Pt 1): 113147. [9] GAUDERMAN W J, URMAN R, AVOL E, et al. Association of impro-ved air quality with lung development in children[J]. N Engl J Med, 2015, 372(10): 905-913. doi: 10.1056/NEJMoa1414123 [10] 米馨, 张云婷, 胡立文, 等. 大气PM2.5长期暴露于儿童血压升高的关联研究[J]. 中华预防医学杂志, 2019, 53(1): 45-50. doi: 10.3760/cma.j.issn.0253-9624.2019.01.005MI X, ZHANG Y T, HU L W, et al. The study on the association of long-term ambient fine particulate matters exposure and elevated blood pressure in children[J]. Chin J Prev Med, 2019, 53(1): 45-50. doi: 10.3760/cma.j.issn.0253-9624.2019.01.005 [11] JORCANO A, LUBCZYńSKA M J, PIEROTTI L, et al. Prenatal and postnatal exposure to air pollution and emotional and aggressive symptoms in children from 8 European birth cohorts[J]. Environ Int, 2019, 131: 104927. doi: 10.1016/j.envint.2019.104927 [12] 环境保护部, 国家质量监督检验检疫总局. 环境空气质量标准GB 3095—2012[S]. 北京: 中国标准出版社, 2012.Ministry of Environmental Protection, General Administration of Quality Supervision Inspection and Quarantine. Ambient air quality standard GB 3095-2012[S]. Beijing: Standards Press of China, 2012. [13] 骆杨, 周锁铨, 孙善磊, 等. 杭州城市热岛空间分布及时域-频域多尺度变化特征[J]. 生态环境学报, 2009, 18(6): 2200-2205. doi: 10.3969/j.issn.1674-5906.2009.06.037LUO Y, ZHOU S Q, SUN S L, et al. Characteristics of multi-scale temporal-spatial distribution of urban heat island in Hangzhou[J]. Ecol Environ Sci, 2009, 18(6): 2200-2205. doi: 10.3969/j.issn.1674-5906.2009.06.037 [14] CHE W, LI A T Y, FREY H C, et al. Factors affecting variability in gaseous and particle microenvironmental air pollutant concentrations in Hong Kong primary and secondary schools[J]. Indoor Air, 2021, 31(1): 170-187. doi: 10.1111/ina.12725 [15] BERGSTRA A D, BRUNEKREEF B, BURDORF A, et al. The effect of industry-related air pollution on lung function and respiratory symptoms in school children[J]. Environ Health, 2018, 17(1): 30. doi: 10.1186/s12940-018-0373-2 [16] WONG S L, COATES A L, TO T. Exposure to industrial air pollutant emissions and lung function in children: Canadian health measures survey, 2007 to 2011[J]. Health Rep, 2016, 27(2): 3-9. [17] 刘卫艳, 张磊, 徐虹, 等. 杭州市大气污染对学龄儿童肺功能的短期效应研究[J]. 中华预防医学杂志, 2019, 53(6): 614-618.LIU W Y, ZHANG L, XU H, et al. Short-term effects of air pollution on lung function of school-age children in Hangzhou[J]. Chin J Prev Med, 2019, 53(6): 614-618. [18] 郭正梅, 刘艳, 高绪芳, 等. 成都市小学生雾霾天气因病缺课及影响因素分析[J]. 中国学校卫生, 2018, 39(11): 1678-1681. doi: 10.16835/j.cnki.1000-9817.2018.11.021GUO Z M, LIU Y, GAO X F, et al. Analysis of influential factors and absenteeism caused by diseases in the fog and haze weather among primary school students in Chengdu[J]. Chin J Sch Health, 2018, 39(11): 1678-1681. doi: 10.16835/j.cnki.1000-9817.2018.11.021 [19] LU B, WANG Y, ZHU Z, et al. Epidemiological and genetic characteristics of influenza virus and the effects of air pollution on laboratory-confirmed influenza cases in Hulunbuir, China, from 2010 to 2019[J]. Epidemiol Infect, 2020, 148: e159. doi: 10.1017/S0950268820001387 [20] HALES N M, BARTON C C, RANSOM M R, et al. A quasi-experimental analysis of elementary school absences and fine particulate air pollution[J]. Medicine(Baltimore), 2016, 95(9): e2916. [21] ZHANG Y, CUI L, XU D, et al. The association of ambient PM2.5 with school absence and symptoms in schoolchildren: a panel study[J]. Pediatr Res, 2018, 84(1): 28-33. doi: 10.1038/s41390-018-0004-1 [22] JIANG Y, NIU Y, XIA Y, et al. Effects of personal nitrogen dioxide exposure on airway inflammation and lung function[J]. Environ Res, 2019, 177: 108620. doi: 10.1016/j.envres.2019.108620 [23] 陈会昌, 张宏学, 阴军莉, 等. 父亲教养态度与儿童在4-7岁间的问题行为和学校适应[J]. 心理学, 2004, 27(5): 1041-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-XLKX200405003.htmCHEN H C, ZHANG H X, YIN J L, et al. Father's parenting attitude and children's problem behavior and school adjustment between 4 and 7 years old[J]. Psychol Sci, 2004, 27(5): 1041-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-XLKX200405003.htm [24] ZHANG J, SUN C, LIU W, et al. Associations of household renovation materials and periods with childhood asthma, in China: a retrospective cohort study[J]. Environ Int, 2018, 113: 240-248. doi: 10.1016/j.envint.2018.02.001 [25] WANG J, LI B, YU W, et al. Rhinitis symptoms and asthma among parents of preschool children in relation to the home environment in Chongqing, China[J]. PLoS One, 2014, 9(4): e94731. doi: 10.1371/journal.pone.0094731 -

计量
- 文章访问数: 724
- HTML全文浏览量: 286
- PDF下载量: 62
- 被引次数: 0