留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MicroRNAs在青春期发育启动中作用的研究进展

史萌萌 刘丽 李学思 翟玲玲

史萌萌, 刘丽, 李学思, 翟玲玲. MicroRNAs在青春期发育启动中作用的研究进展[J]. 中国学校卫生, 2021, 42(5): 788-791. doi: 10.16835/j.cnki.1000-9817.2021.05.035
引用本文: 史萌萌, 刘丽, 李学思, 翟玲玲. MicroRNAs在青春期发育启动中作用的研究进展[J]. 中国学校卫生, 2021, 42(5): 788-791. doi: 10.16835/j.cnki.1000-9817.2021.05.035
SHI Mengmeng, LIU Li, LI Xuesi, ZHAI Lingling. Research progress of the role of microRNAs in puberty initiation[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2021, 42(5): 788-791. doi: 10.16835/j.cnki.1000-9817.2021.05.035
Citation: SHI Mengmeng, LIU Li, LI Xuesi, ZHAI Lingling. Research progress of the role of microRNAs in puberty initiation[J]. CHINESE JOURNAL OF SCHOOL HEALTH, 2021, 42(5): 788-791. doi: 10.16835/j.cnki.1000-9817.2021.05.035

MicroRNAs在青春期发育启动中作用的研究进展

doi: 10.16835/j.cnki.1000-9817.2021.05.035
基金项目: 

国家自然基金面上项目 81872640

详细信息
    作者简介:

    史萌萌(1996-), 女, 黑龙江省伊春人, 在读硕士, 主要研究方向为儿少卫生与妇幼保健

    通讯作者:

    翟玲玲,E-mail: llzhai@cmu.edu.cn

  • 中图分类号: R 179 Q 42

Research progress of the role of microRNAs in puberty initiation

  • 摘要: miRNAs是一类单链、内源性的、非编码的小RNA,其主要作用是调控基因的转录后表达,可发挥多种生物功能。青春期发育涉及复杂的调控网络,其中下丘脑-垂体-性腺轴决定性作用是目前的主要观点。研究发现miRNAs表达水平与青春期发育密切相关,miRNAs的缺失和异常表达可影响青春期的启动,具体机制尚不清楚,可能与下丘脑GnRH的分泌密切相关。本文主要介绍目前与青春期启动密切相关的几种miRNAs,并对其在青春期发育启动中的作用及可能的机制进行综述。
  • [1] 张谊, 张燕. miRNA与精子发生发育及精液质量关系的研究进展[J]. 黑龙江畜牧兽医, 2016, 15: 63-65. DOI: 10.13881/j.cnki.hljxmsy.2016.1365.

    ZHANG Y, ZHANG Y. Research progress of the relationship between miRNA and spermatogenesis and semen quality[J]. Heilongjiang Ani Sci Veter Med, 2016, 15: 63-65. DOI: 10.13881/j.cnki.hljxmsy.2016.1365.
    [2] OJEDA S R, LOMNICZI A, SANDAU U, et al. New concepts on the control of the onset of puberty[J]. Endocr Dev, 2010, 17: 44-51. DOI: 10.11591000262527.
    [3] PLANT T M. Neuroendocrine control of the onset of puberty[J]. Front Neuroendocrinol, 2015, 38: 73-88. DOI: 10.1016/j.yfrne.2015.04.002.
    [4] LOMNICZI A, WRIGHT H, OJEDA S R. Epigenetic regulation of female puberty[J]. Front Neuroendocrinol, 2015, 36: 90-107. DOI: 10.1016/j.yfrne.2014.08.003
    [5] CHEKULAEVA M, FILIPOWICZ W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells[J]. Curr Opin Cell Biol, 2009, 21(3): 452-460. doi: 10.1016/j.ceb.2009.04.009
    [6] LYNN F C. Meta-regulation: microRNA regulation of glucose and lipid metabolism[J]. Trends Endocrinol Metab, 2009, 20(9): 452-459. doi: 10.1016/j.tem.2009.05.007
    [7] ELKS C E, PERRY J R, SULEM P, et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies[J]. Nat Genet, 2010, 42(12): 1077-1085. doi: 10.1038/ng.714
    [8] MESSINA A, LANGLET F, CHACHLAKI K, et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty[J]. Nat Neurosci, 2016, 19(6): 835-844. doi: 10.1038/nn.4298
    [9] WANG H, GRAHAM I, HASTINGS R, et al. Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects[J]. J Biol Chem, 2015, 290(5): 2699-2714. doi: 10.1074/jbc.M114.621565
    [10] MAO L, LIU S, HU L, et al. MiR-30 Family: a promising regulator in development and disease[J]. Biomed Res Int, 2018, 2018: 9623412. DOI: 10.1155/201819623412.
    [11] MADISON-VILLAR M J, MICHALAK P. Misexpression of testicular microRNA in sterile Xenopus hybrids points to tetrapod-specific microRNAs associated with male fertility[J]. J Mol Evol, 2011, 73(5/6): 316-324. http://www.ncbi.nlm.nih.gov/pubmed/22207500
    [12] FISCHER S, BUCK T, WAGNER A, et al. A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells[J]. Biotechnol J, 2014, 9(10): 1279-1292. doi: 10.1002/biot.201400306
    [13] FISCHER S, MATHIAS S, SCHAZ S, et al. Enhanced protein production by microRNA-30 family in CHO cells is mediated by the modulation of the ubiquitin pathway[J]. J Biotechnol, 2015, 212: 32-43. DOI: 10.1016/j.jbiotec.2015.08.002.
    [14] MA H, HOSTUTTLER M, WEI H, et al. Characterization of the rainbow trout egg microRNA transcriptome[J]. PLoS One, 2012, 7(6): e39649. doi: 10.1371/journal.pone.0039649
    [15] ABREU A P, DAUBER A, MACEDO D B, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3[J]. N Engl J Med, 2013, 368(26): 2467-2475. doi: 10.1056/NEJMoa1302160
    [16] ABREU A P, MACEDO D B, BRITO V N, et al. A new pathway in the control of the initiation of puberty: the MKRN3 gene[J]. J Mol Endocrinol, 2015, 54(3): R131-R139. doi: 10.1530/JME-14-0315
    [17] HAGEN C P, SRENSEN K, MIERITZ M G, et al. Circulating MKRN3 levels decline prior to pubertal onset and through puberty: a longitudinal study of healthy girls[J]. J Clin Endocrinol Metab, 2015, 100(5): 1920-1926. doi: 10.1210/jc.2014-4462
    [18] BUSCH A S, HAGEN C P, ALMSTRUP K, et al. Circulating MKRN3 Levels Decline During Puberty in Healthy Boys[J]. J Clin Endocrinol Metab, 2016, 101(6): 2588-2593. doi: 10.1210/jc.2016-1488
    [19] LIU H, KONG X, CHEN F. MKRN3 functions as a novel ubiquitin E3 ligase to inhibit Nptx1 during puberty initiation[J]. Oncotarget, 2017, 8(49): 85102-85109. doi: 10.18632/oncotarget.19347
    [20] JONG M T, CAREY A H, CALDWELL K A, et al. Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region[J]. Hum Mol Genet, 1999, 8(5): 795-803. doi: 10.1093/hmg/8.5.795
    [21] ABREU A P, KAISER U B. Pubertal development and regulation[J]. Lancet Diab Endocrinol, 2016, 4(3): 254-264. doi: 10.1016/S2213-8587(15)00418-0
    [22] XU Y, SUN J Y, JIN Y F, et al. PCAT6 participates in the development of gastric cancer through endogenously competition with microRNA-30[J]. Eur Rev Med Pharmacol Sci, 2018, 22(16): 5206-5213. http://www.ncbi.nlm.nih.gov/pubmed/30178843
    [23] HERAS V, SANGIAO-ALVARELLOS S, MANFREDI-LOZANO M, et al. Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, MKRN3[J]. PLoS Biol, 2019, 17(11): e3000532. doi: 10.1371/journal.pbio.3000532
    [24] SANGIAO-ALVARELLOS S, PENA-BELLO L, MANFREDI-LOZANO M, et al. Perturbation of hypothalamic microRNA expression patterns in male rats after metabolic distress: impact of obesity and conditions of negative energy balance[J]. Endocrinology, 2014, 155(5): 1838-1850. doi: 10.1210/en.2013-1770
    [25] KUOKKANEN S, CHEN B, OJALVO L, et al. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium[J]. Biol Reprod, 2010, 82(4): 791-801. doi: 10.1095/biolreprod.109.081059
    [26] VIDAL-GÓMEZ X, PÉREZ-CREMADES D, MOMPEÓN A, et al. MicroRNA as crucial regulators of gene expression in estradiol-treated human endothelial cells[J]. Cell Physiol Biochem, 2018, 45(5): 1878-1892. doi: 10.1159/000487910
    [27] BHAT-NAKSHATRI P, WANG G, COLLINS N R, et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells[J]. Nucleic Acids Res, 2009, 37(14): 4850-4861. doi: 10.1093/nar/gkp500
    [28] ELKS C E, PERRY J R, SULEM P, et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies[J]. Nat Genet, 2010, 42(12): 1077-1085. doi: 10.1038/ng.714
    [29] REINHART B J, SLACK F J, BASSON M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906. doi: 10.1038/35002607
    [30] ROUSH S, SLACK F J. The let-7 family of microRNAs[J]. Trends Cell Biol, 2008, 18(10): 505-516. doi: 10.1016/j.tcb.2008.07.007
    [31] O'DAY E, LE M T, IMAI S, et al. An RNA-binding protein, Lin28, recognizes and remodels G-quartets in the MicroRNAs(miRNAs)and mRNAs it regulates[J]. J Biol Chem, 2015, 290(29): 17909-17922. doi: 10.1074/jbc.M115.665521
    [32] STEFANI G, CHEN X, ZHAO H, et al. A novel mechanism of LIN-28 regulation of let-7 microRNA expression revealed by in vivo HITS-CLIP in C. elegans[J]. RNA, 2015, 21(5): 985-996. doi: 10.1261/rna.045542.114
    [33] FAEHNLE C R, WALLESHAUSER J, JOSHUA-TOR L. Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway[J]. Nature, 2014, 514(7521): 252-256. doi: 10.1038/nature13553
    [34] ESQUELA-KERSCHER A, TRANG P, WIGGINS J F, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer[J]. Cell Cycle, 2008, 7(6): 759-764. doi: 10.4161/cc.7.6.5834
    [35] ROTH C L, MASTRONARDI C, LOMNICZI A, et al. Expression of a tumor-related gene network increases in the mammalian hypothalamus at the time of female puberty[J]. Endocrinology, 2007, 148(11): 5147-5161. doi: 10.1210/en.2007-0634
    [36] GUO Y, CHEN Y, ITO H, et al. Identification and characterization of lin-28 homolog B(Lin28b) in human hepatocellular carcinoma[J]. Gene, 2006, 384: 51-61. DOI: 10.1016/j.gene.2006.07.011.
    [37] MOSS E G, TANG L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites[J]. Dev Biol, 2003, 258(2): 432-442. doi: 10.1016/S0012-1606(03)00126-X
    [38] SANGIAO-ALVARELLOS S, MANFREDI-LOZANO M, RUIZ-PINO F, et al. Testicular expression of the Lin28/let-7 system: hormonal regulation and changes during postnatal maturation and after manipulations of puberty[J]. Sci Rep, 2015, 5: 15683. DOI: 10.1038/srep15683.
    [39] ONG K K, ELKS C E, LI S, et al. Genetic variation in Lin28b is associated with the timing of puberty[J]. Nat Genet, 2009, 41(6): 729-733. doi: 10.1038/ng.382
    [40] ZHU H, SHAH S, SHYH-CHANG N, et al. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies[J]. Nat Genet, 2010, 42(7): 626-630. doi: 10.1038/ng.593
    [41] SANGIAO-ALVARELLOS S, MANFREDI-LOZANO M, RUIZ-PINO F, et al. Changes in hypothalamic expression of the Lin28/let-7 system and related microRNAs during postnatal maturation and after experimental manipulations of puberty[J]. Endocrinology, 2013, 154(2): 942-955. doi: 10.1210/en.2012-2006
    [42] SAMPSON V B, RONG N H, HAN J, et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells[J]. Cancer Res, 2007, 67(20): 9762-9770. doi: 10.1158/0008-5472.CAN-07-2462
    [43] SACHDEVA M, MO Y Y. miR-145-mediated suppression of cell growth, invasion and metastasis[J]. Am J Transl Res, 2010, 2(2): 170-180. http://www.ncbi.nlm.nih.gov/pubmed/20407606
  • 加载中
计量
  • 文章访问数:  532
  • HTML全文浏览量:  284
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 修回日期:  2020-09-04
  • 网络出版日期:  2021-05-20
  • 刊出日期:  2021-05-25

目录

    /

    返回文章
    返回