[1] |
KONIECZNY M R, SENYURT H, KRAUSPE R. Eidemiology of adolescent idiopathic scoliosis[J]. J Child Orthop, 2013, 7(1): 3-9. doi: 10.1007/s11832-012-0457-4
|
[2] |
WISE C A, SEPICH D, USHIKI A. The cartilage matrisome in adolescent idiopathic scoliosis[J]. Bone Res, 2020, 8(1): 1-13. doi: 10.1038/s41413-019-0078-3
|
[3] |
XU L L, WU Z C, XIA C, et al. A genetic predictive model estimating the risk of developing adolescent idiopathic scoliosis[J]. Curr Genom, 2019, 20(4): 246-251. doi: 10.2174/1389202920666190730132411
|
[4] |
WU Z C, WANG Y W, DAI Z C, et al. Genetic variants of ABO and SOX6 are associated with adolescent idiopathic scoliosis in Chinese Han population[J]. Spine, 2019, 44(18): E1063-1067. doi: 10.1097/BRS.0000000000003062
|
[5] |
KIKANLOO S R, TARPADA S P, CHO W, Etiology of adolescent idiopathic scoliosis: a literature review[J]. Asian Spine, 2019, 13(3): 519-526 doi: 10.31616/asj.2018.0096
|
[6] |
JUSTIC C M, MILLER N H, MAROSY B. Familial idiopathic scoliosis: evidence of an x-linked susceptibility locus. Spine, 2003, 28(6): 589-594. http://jmg.bmj.com/lookup/external-ref?access_num=12642767&link_type=MED
|
[7] |
ROAF R. The treatment of progressive scoliosis by unilateral growth-arrest[J]. J Bone Joint Surg Br, 1963, 45(4): 637-651. http://europepmc.org/abstract/MED/14074311
|
[8] |
ALDEN K J, MAROSY B, NZEGWU N, et al. Idiopathic scoliosis: identification of candidate regions on chromosome 19p13[J]. Spine(Phila Pa 1976), 2006, 31(16): 1815-1819. doi: 10.1097/01.brs.0000227264.23603.dc
|
[9] |
KOU I, OTOMO N, TAKEDA K, et al. Genome-wide association study identifies 14 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese[J]. Nat Commun, 2019, 10(1): 3685. doi: 10.1038/s41467-019-11596-w
|
[10] |
JEROME L A, PAPAIOANNOU V E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1[J]. Nat Genet, 2001, 27(3): 286-291. doi: 10.1038/85845
|
[11] |
LINDSAY E A, VITELLI F, SU H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice[J]. Nature, 2001, 410(6824): 97-101. doi: 10.1038/35065105
|
[12] |
WU N, MING X, XIAO J, et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis[J]. N Engl J Med, 2015, 372(4): 341-350. doi: 10.1056/NEJMoa1406829
|
[13] |
WILLNER S, JOHNRLL O. Study of biochemical and hormonal data in idiopathic scoliosis in girls[J]. Arch Orthop Trauma Surg, 1981, 98(4): 251-255. doi: 10.1007/BF00378877
|
[14] |
BUTLER M G, HOSSAIN W, HASSAN M, et al. Growth hormone receptor(GHR) gene polymorphism and scoliosis in Prader-Willi syndrome[J]. Growth Horm IGF Res, 2018, 39: 29-33. DOI: 10.1016/j.ghir.2017.12.001.
|
[15] |
YUN Y H, KWON S S, KOH Y, et al. Influence of growth hormone treatment on radiographic indices of the spine: propensity-matched analysis[J]. J Orthop Surg Res, 2017, 12(1): 130. doi: 10.1186/s13018-017-0630-z
|
[16] |
THILLAND M J. Vertebral column deformities following epiphysectomy inthe chick[J]. Crebd Seances Acad Sci, 1959, 248(8): 1238-1240. http://www.ncbi.nlm.nih.gov/pubmed/13629950
|
[17] |
CHEUNG K M, LU D S, POON A M, et al. Effect of melatonin suppression on scoliosis development in chickens by either constant light or surgical pinealectomy[J]. Spine(Phila Pa 1976), 2003, 28(17): 1941-1944. doi: 10.1097/01.BRS.0000083140.80750.93
|
[18] |
HILBRAND A S, BLAKEMORE L C, LODER R T, et al. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 1996, 21(10): 1140-1146. doi: 10.1097/00007632-199605150-00004
|
[19] |
FAGAN A B, KENNAWAY D J, SUTHERLAND A D. Total 24-hour melatonin secretion in adolescent idiopathic scoliosis: a case-control study[J]. Spine(Phila Pa 1976), 1998, 23(1): 41-46. doi: 10.1097/00007632-199801010-00009
|
[20] |
YANG S, ZHENG C, JIANG J, et al. The value of applying a melatonin antagonist(Luzindole) in improving the success rate of the bipedal rat scoliosis model[J]. BMC Musculoskelet Disord, 2017, 18(1): 137. doi: 10.1186/s12891-017-1500-x
|
[21] |
ZAMECNIK J, KRSKOVA L, HACEK J, et al. Etiopathogenesis of adolescent idiopathic scoliosis: expression of melatonin receptors 1A/1B, calmodulin and estrogen receptor 2 in deep paravertebral muscles revisited[J]. Mol Med Rep, 2016, 14(6): 5719-5724. doi: 10.3892/mmr.2016.5927
|
[22] |
SHUHUI, ZHENG, HANG, et al. Estrogen promotes the onset and development of idiopathic scoliosis via disproportionate endochondral ossification of the anterior and posterior column in a bipedal rat model[J]. Exper Mol Med, 2018, 50(11): 144. http://www.nature.com/articles/s12276-018-0161-7
|
[23] |
ESPOSITO T, UCCELLO R, CALIENDO R, et al. Estrogen receptor polymorphism, estrogen content and idiopathic scoliosis in human: a possible genetic linkage[J]. J Steroid Biochem Mol Biol, 2009, 116(1/2): 56-60. http://europepmc.org/abstract/med/19406238
|
[24] |
LETELLIER K, AZEDDINE B, PARENT S, et al. Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients[J]. J Pineal Res, 2008, 45(4): 383-393. doi: 10.1111/j.1600-079X.2008.00603.x
|
[25] |
周传坤, 王欢, 邹银双, 等. 雌激素及其受体在青少年特发性脊柱侧凸发病中作用的研究进展[J]. 中国修复重建外科杂志, 2015, 29(11): 1441-1445. ZHOU C K, WANG H, ZOU Y S, et al. Research progress of role of estrogen and estrogen receptor on onset and progression of adolescent idiopathic scoliosis[J]. Chin J Reparat Reconstruct Surg, 2015, 29(11): 1441-1445. doi: 10.7507/1002-1892.20150308
|
[26] |
KUDO D, MIYAKOSHI N, HONGO M, et al. Nerve growth factor and estrogen receptor mRNA expression in paravertebral muscles of patients with adolescent idiopathic scoliosis: a preliminary study[J]. Spine Deform, 2015, 3(2): 122-127. doi: 10.1016/j.jspd.2014.07.006
|
[27] |
ZHANG H Q, LU S J, TANG M X, et al. Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2009, 34(8): 760-764. doi: 10.1097/BRS.0b013e31818ad5ac
|
[28] |
AULISAL L, PAPALEO P, POLA E, et al. Association between IL-6 and MMP-3 gene polymorphisms and adolescent idiopathic scoliosis: a case-control study[J]. Spine(Phila Pa 1976), 2007, 32(24): 2700-2702. doi: 10.1097/BRS.0b013e31815a5943
|
[29] |
ZHANG Y, GU Z, QIU G. The association study of calmodulin 1 gene polymorphisms with susceptibility to adolescent idiopathic scoliosis[J]. Biomed Res Int, 2014, 2014(8): 168106. http://www.onacademic.com/detail/journal_1000040471989610_d05e.html
|
[30] |
ACAROGLU E, AKEL I, ALANAY A, et al. Comparison of the melatonin and calmodulin in paravertebral muscle and platelets of patients with or without adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2009, 34(18): 659-663. doi: 10.1097/BRS.0b013e3181a3c7a2
|
[31] |
LOWE T, LAWELLIN D, SMⅡTH D, et al. Platelet calmodulin levels in adolescent idiopathic scoliosis: do the levels correlate with curve progression and severity?[J]. Spine(Phila Pa 1976), 2002, 27(7): 768-775. doi: 10.1097/00007632-200204010-00016
|
[32] |
LOWE T G, BURWELL R G, DANGERFIELD P H. Platelet calmodulin levels in adolescent idiopathic scoliosis(AIS): can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE[J]. Eur Spine J, 2004, 13(3): 257-265. doi: 10.1007/s00586-003-0655-3
|
[33] |
BAE S H, GOH T S, KIM D S, et al. Leptin in adolescent idiopathic scoliosis-a meta-analysis[J]. J Clin Neurosci, 2020, 71(1): 124-128. http://www.sciencedirect.com/science/article/pii/s0967586819313773
|
[34] |
MAN G C, TAM E M, WONG Y S, et al. Abnormal osteoblastic response to leptin in patients with adolescent idiopathic scoliosis[J]. Scientific Reports, 2019, 9(1): 17128. doi: 10.1038/s41598-019-53757-3
|
[35] |
WU T, SUN X, ZHU Z, et al. Role of enhanced central leptin activity in a scoliosis model created in bipedal amputated mice[J]. Spine(Phila Pa 1976), 2015, 40(19): 1041-1045. doi: 10.1097/BRS.0000000000001060
|
[36] |
LIU Z, WANG F, XU L L, et al. Polymorphism of rs2767485 in leptin receptor gene is associated with the occurrence of adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2015, 40(20): 1593-1598. doi: 10.1097/BRS.0000000000001095
|
[37] |
GEISSELE A E, KRANSDORF M J, GEYER C A, et al. Magnetic resonance imaging of the brain stem in adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 1991, 16(7): 761-763. doi: 10.1097/00007632-199107000-00013
|
[38] |
LIU T, CHU WC, YOUNG G, et al. MR analysis of regional brain volume in adolescent idiopathic scoliosis: neurological manifestation of a systemic disease[J]. J Mag Res Imag, 2008, 27(4): 732-736. doi: 10.1002/jmri.21321
|
[39] |
SHI L, WANG D, CHU W C, et al. Volume-based morphometry of brain MR images in adolescent idiopathic scoliosis and healthy control subjects[J]. Am J Neuror, 2009, 30(7): 1302-1307. doi: 10.3174/ajnr.A1577
|
[40] |
CHENG J C, GUO X, SHER A H, et al. Correlation between curve severity, somatosensory evoked potentials, and magnetic resonance imaging in adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 1999, 24(16): 1679-1684. doi: 10.1097/00007632-199908150-00009
|
[41] |
CHAU W W, CHU W C, LAM T P, et al. Anatomical origin of abnormal Somatosensory-Evoked Potential(SEP) in adolescent idiopathic scoliosis with different curve severity and correlation with cerebellar tonsillar level determined by MRI[J]. Spine(Phila Pa 1976), 2016, 41(10): 598-604. doi: 10.1097/BRS.0000000000001345
|
[42] |
CHENG J C, QIN L, CHEUNG C S, et al. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis[J]. J Bone Miner Res, 2000, 15(8): 1587-95. doi: 10.1359/jbmr.2000.15.8.1587
|
[43] |
GOTO M, KAWAKAMI N, AZEGAMI H, et al. Buckling and bone modeling as factors in the development of idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2003, 28(4): 364-370. http://europepmc.org/abstract/MED/12590211
|
[44] |
BIBBY S R, FAIRBANK J C, URBAN M R, et al. Cell viability in scoliotic discs in relation to disc deformity and nutrient levels[J]. Spine(Phila Pa 1976), 2002, 27(20): 2220-2228. doi: 10.1097/00007632-200210150-00007
|
[45] |
DE REUVER S, BRINK R C, HOMANS J F, et al. Anterior lengthening in scoliosis occurs only in the disc and is similar in different types of scoliosis[J]. Spine J, 2020. DOI: 10.1016/j.spinee.2020.03.005.
|
[46] |
TAKEDA K, KOU I, HOSOGANE N, et al. Association of susceptibility genes for adolescent idiopathic scoliosis and intervertebral disc degeneration with adult spinal deformity[J]. Spine, 2019, 44(23): 1623-1629. doi: 10.1097/BRS.0000000000003179
|
[47] |
DEHNOKHALAJI M, GOLBAKHSH MR, SIAVASHI B, et al. Evaluation of the degenerative changes of the distal intervertebral discs after internal fixation surgery in adolescent idiopathic scoliosis[J]. Asian Spine J, 2018, 2(6): 1060-1068. http://www.ncbi.nlm.nih.gov/pubmed/30322250
|
[48] |
包蕾, 刘卉, 高维纬. 艺术体操运动员脊柱曲度异常与躯干两侧活动度和力量对称性的关系[J]. 中国体育科技, 2020, 56(2): 39-45, 81. BAO L, LIU H, GAO W W, The relationship between abnormal spinal curvature and symmetry of the activity and muscle strength of the trunk in rhythmic gymnastics[J]. Chin Sport Sci Technol, 2020, 56(2): 39-45+81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTY202002005.htm
|
[49] |
PERDRIOLLE R, VIDAL J. Morphology of scoliosis: three-dimensional evolution[J]. Orthopedics, 1987, 10(6): 909-915. http://europepmc.org/abstract/MED/3615285
|
[50] |
ASHER M A, BUTON DC. A concept of idiopathic scoliosis deformities as imperfect torsion(s)[J]. Clin Orthop Relat Res, 1999, 364(7): 11-25. http://europepmc.org/abstract/med/10416387
|
[51] |
MC A P, CUNNINGHAM B, MULLINEX K, et al. Middle-column gap balancing and middle-column mismatch in spinal reconstructive surgery[J]. Int J Spine Surg, 2018, 12(2): 160-171. doi: 10.14444/5024
|
[52] |
MCAFEE P C, EISERMAN L, CUNNINGHAM B W, et al. Middle column gap balancing to predict optimal anterior structural support and spinal height in spinal reconstructive surgery[J]. Spine(Phila Pa 1976), 2017, 42(Suppl 7): S19-20. http://smartsearch.nstl.gov.cn/paper_detail.html?id=c200bda9e37ad3aba6f9aa4ad045af00
|
[53] |
SUGAYA T, SAKAMOTO M, NAKAZAWA R, et al. Relationship between spinal range of motion and trunk muscle activity during trunk rotation[J]. J Phys Ther Sci, 2016, 28(2): 589-595. doi: 10.1589/jpts.28.589
|
[54] |
HEFTI F. Pathogenesis and biomechanics of adolescent idiopathic scoliosis(AIS)[J]. J Child Orthop, 2013, 7(1): 17-24. doi: 10.1007/s11832-012-0460-9
|
[55] |
MEHLMAN C T, ARAGHI A, ROY D R. Hyphenated history:the hueter-volkmann law[J]. Am J Orthop(Belle Mead NJ), 1997, 26(11):798-800. http://europepmc.org/abstract/MED/9402217
|