Assessment of transmission capacity of influenza and effect evaluation of suspension measures in schools and nurseries
-
摘要:
目的 评价学校及托幼机构流行性感冒聚集性疫情传播能力和停课措施效果,为制定疾病管理策略和控制措施提供依据。 方法 采用SEIAR动力学模型对深圳市福田区学校发生的流行性感冒疫情数据进行模拟,计算疫情的基本再生系数(R0)来评价疫情传播能力,计算疫情的累计罹患率来评价停课措施的防控效果。 结果 学校流感疫情无干预情况下R0值为8.44(8.01,8.89),不同类型学校流感疫情R0值差异有统计学意义(F=9.52,P < 0.01),中小学校流感疫情的R0值高于托幼机构(P < 0.05);A型流感疫情R0值高于B型流感(t=2.71,P < 0.01),A型H3亚型流感疫情R0值高于B型Victoria系(P < 0.05);停课4,7 d的疫情累计罹患率低于不采取停课措施的疫情(P < 0.05),而停课4 d与7 d的疫情累计罹患率差异无统计学意义(P>0.05)。 结论 学校流感疫情传播能力强,中小学校高于托幼机构;在涉疫班级达到停课标准时,建议停课4 d。 Abstract:Objective To estimate the transmission capacity of influenza clustering in schools and nurseries, and to evaluate the effect of suspension measures, providing a basis for formulating disease management strategies and control measures. Methods The SEIAR dynamics model was used to simulate the epidemic data, calculating the basic regeneration coefficient R0 of the epidemic to evaluate the epidemic transmission capacity, and calculating the cumulative incidence rate of the epidemic to evaluate the prevention and control effect of the suspension measures. Results The basic regeneration coefficient R0 was 8.44(8.01, 8.89) without intervention. There were statistically significant differences in R0 of influenza epidemic among different types of school(F=9.52, P < 0.01). The R0 of influenza epidemic in primary and secondary schools were higher than that in nurseries(P < 0.05). R0 of influenza A was higher than that of influenza B(t=2.71, P < 0.01). R0 of influenza A(H3) was higher than of influenza B(Victoria)(P < 0.05). The cumulative incidence of the outbreaks which were suspended for 4 days and 7 days was significantly lower than that in the non-suspensions(P < 0.05). However, there was no significant difference in the cumulative incidence of the outbreaks between the 4-day suspension and the 7-day suspension(P>0.05). Conclusion Transmission capacity of school-based influenza epidemic is high, especially among primary and secondary schools. When the epidemic situation of infected class meets the suspension standard, it is recommended to suspend classes for 4 days. -
表 1 不同停课措施在不同类型学校累计罹患率比较(%,95%CI)
Table 1. Comparison of cumulative incidence of different suspension measures in different types of schools (%, 95%CI)
停课措施 托幼机构(n=8) 小学(n=42) 中学(n=10) 合计(n=60) 无 99.00(98.63, 99.30) 99.79(99.75, 99.81) 99.82(99.76, 99.89) 99.69(99.59, 99.76) 停课4 d 5.38(4.13, 6.78) 7.41(4.75, 10.80) 13.06(6.63, 20.42) 8.08(5.82, 10.68) 停课7 d 4.46(3.65, 5.23) 5.23(2.98, 8.22) 9.24(4.31, 16.41) 5.79(4.00, 8.21) H值 15.87 85.65 19.73 121.73 P值 <0.01 <0.01 <0.01 <0.01 表 2 不同停课措施在不同病毒型别/亚型/系疫情累计罹患率比较(%,95%CI)
Table 2. Comparison of cumulative incidence of different suspension measures by virus types/subtypes/ lineage (%, 95%CI)
停课措施 A型(n=36) B型(n=24) H1型(n=12) H3型(n=24) Victoria系(n=12) Yamagata系(n=12) 无 99.76(99.67, 99.82) 99.59(99.39, 99.74) 99.69(99.54, 99.82) 99.79(99.69, 99.86) 99.42(99.06, 99.70) 99.75(99.68, 99.82) 停课4 d 10.38(6.82, 14.29) 4.65(3.42, 5.88) 5.90(3.92, 7.89) 12.62(7.40, 19.10) 3.99(2.78, 5.27) 5.30(3.15, 7.53) 停课7 d 7.60(4.73, 11.24) 3.08(2.42, 3.81) 3.78(2.63, 5.00) 9.51(5.01, 14.70) 2.89(2.05, 3.88) 3.27(2.21, 4.51) -
[1] 国家卫生健康委员会. 流行性感冒诊疗方案(2018年版修订版)[J]. 传染病信息, 2018, 31(6): 500-504. doi: 10.3969/j.issn.1007-8134.2018.06.002National Health Commission of the People's Republic of China. Diagnosis and treatment of influenza(2018)[J]. Infect Dis Inform, 2018, 31(6): 500-504. doi: 10.3969/j.issn.1007-8134.2018.06.002 [2] 黄敏, 旷翠萍, 陈戊申, 等. 2009—2013年深圳市罗湖区中小学校及托幼机构传染病暴发疫情分析[J]. 职业与健康, 2015, 31(13): 1818-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJK201513029.htmHUANG M, KUANG C P, CHEN W S, et al. Analysis on infectious disease outbreaks in primary schools, secondary schools and nurseries of Luohu District of Shenzhen City from 2009-2013[J]. Occup Health, 2015, 31(13): 1818-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJK201513029.htm [3] 刘海博, 陈达廷, 李欣欣, 等. 2014—2016年北京市大兴区流感聚集性疫情及疫苗保护率分析[J]. 现代预防医学, 2017, 44(9): 3539-3541. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201719021.htmLIU H B, CHEN D T, LI X X, et al. Influenza vaccine protection rate and aggregation epidemic of influenza in Daxing District of Beijing, 2014-2016[J]. Modern Prev Med, 2017, 44(9): 3539-3541. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201719021.htm [4] 曹蓝, 陆剑云, 陈艺韵, 等. 广州市2015—2016年儿童流感疫情病原学监测分析[J]. 中国学校卫生, 2018, 39(3): 418-420. https://www.cnki.com.cn/Article/CJFDTOTAL-XIWS201803031.htmCAO L, LU J Y, CHEN Y Y, et al. Surveillance and analysis of influenza outbreaks in children in Guangzhou during 2015-2016[J]. Chin J Sch Health, 2018, 39(3): 418-420. https://www.cnki.com.cn/Article/CJFDTOTAL-XIWS201803031.htm [5] 许玉成, 邓凯杰, 钟剑明, 等. 2007—2016年深圳市福田区中小学校及托幼机构传染病暴发疫情流行特征分析[J]. 现代预防医学, 2017, 44(10): 1750-1752, 1773. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201710005.htmXU Y C, DENG K J, ZHONG J M, et al. Epidemiological characteristics of infectious disease outbreak at primary schools, secondary schools and nurseries in Futian District of Shenzhen from 2007-2016[J]. Modern Prev Med, 2017, 44(10): 1750-1773. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201710005.htm [6] LEE V J, LYE D C, WILDER-SMITH A. Combination strategies for pandemic influenza response-a systematic review of mathematical modeling studies[J]. BMC Med, 2009, 7: 76. DOI: 10.1186/1741-7015-7-76. [7] 王小莉, 杨鹏, 曹志冬, 等. 北京市2009年甲型H1N1流感防控效果定量评价[J]. 中华流行病学杂志, 2010, 31(12): 1374-1378. doi: 10.3760/cma.j.issn.0254-6450.2010.12.011WANG X L, YANG P, CAO Z D, et al. Quantitative evaluation on the effectiveness of prevention and control measures against pandemic influenza A(HINI)in Beijing, 2009[J]. Chin J Epidemiol, 2010, 31(12): 1374-1378. doi: 10.3760/cma.j.issn.0254-6450.2010.12.011 [8] 陈田木, 刘如春, 张锡兴, 等. 长沙市甲型H1N1流感流行干预措施效果的数学模拟[J]. 中国卫生统计, 2015, 32(2): 205-210. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201502006.htmCHEN T M, LIU R C, ZHANG X X, et al. Simulating the effects of intervention strategies on the epidemic of influenza A(H1N1) using dynamic model in Changsha City[J]. Chin J Health Stat, 2015, 32(2): 205-210. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201502006.htm [9] 陈田木, 陈水连, 谢知, 等. 不同隐性感染和传播能力条件下的流感暴发防控措施效果模拟[J]. 中国热带医学, 2017, 17(5): 470-476. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYX201705011.htmCHEN T M, CHEN S L, XIE Z, et al. Simulated effectiveness of control countermeasures for influenza outbreaks based on different asymptomatic infections and transmissibility[J]. Chin Trop Med, 2017, 17(5): 470-476. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYX201705011.htm [10] 梁静, 方琼, 陈田木, 等. 2017年深圳市学校乙型/Yamagata系流感传播动力学研究及防控措施评价[J]. 疾病监测, 2019, 34(6): 529-535. https://www.cnki.com.cn/Article/CJFDTOTAL-JBJC201906015.htmLIANG J, FANG Q, CHEN T M, et al. Transmission dynamic of influenza B virus Yamagata lineage and assessment of infection control measures in schools in Shenzhen[J]. Dis Surveill, 2019, 34(6): 529-535. https://www.cnki.com.cn/Article/CJFDTOTAL-JBJC201906015.htm [11] 国家卫生健康委疾控局. 流感样病例暴发疫情处置指南[Z]. 2018-11-14.National Health Commission of the People's Republic of China. Guidelines for management of outbreaks of influenza-like illness[Z]. 2018-11-14. [12] 陈田木, 刘如春, 谭爱春, 等. 隔离患者对控制学校甲型H1N1流感暴发疫情效果的数学模拟[J]. 中国卫生统计, 2014, 31(3): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201403006.htmCHEN T M, LIU R C, TAN A C, et al. Mathematical simulation of effect of isolation on influenza A(H1N1) outbreak at school[J]. Chin J Health Stat, 2014, 31(3): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201403006.htm [13] 钟剑明, 梁静, 李学云, 等. 学校流感暴发疫情防控措施动力学模型效果分析[J]. 现代预防医学, 2019, 46(11): 1946-1950, 1955. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201911007.htmZHONG J M, LIANG J, LI X Y, et al. Effect of dynamic model of prevention and control measures for influenza outbreak in schools[J]. Modern Prev Med, 2019, 46(11): 1946-1950, 1955. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201911007.htm [14] LONGINI I M, NIZAM A, XU S F, et al. Containing pandemic influenza at the source[J]. Science, 2005, 309(5737): 1083-1087. DOI: 10.1126/science.1115717. [15] CHEN T, CHEN T M, LIU R C, et al. Transmissibility of the influenza virus during influenza outbreaks and related asymptomatic infection in mainland China, 2005-2013[J]. PLoS One, 2016, 11(11): e0166180. DOI: 10.1371/journal.pone.0166180. [16] YANG Y, SUGIMOTO J D, HALLORAN M E, et al. The transmissibility and control of pandemic influenza A(H1N1) virus[J]. Science, 2009, 326(5953): 729-733. DOI: 10.1126/science.1177373. [17] LIU R C, LEUNG R K K, CHEN T M, et al. The effectiveness of age-specific isolation policies on epidemics of influenza A(H1N1) in a large city in central South China[J]. PLoS One, 2015, 10(7): e0132588. DOI: 10.1371/journal.pone.0132588. [18] CHEN S L, LIU R C, CHEN F M, et al. Dynamic modelling of strategies for the control of acute haemorrhagic conjunctivitis outbreaks in schools in Changsha, China(2004-2015)[J]. Epidemiol Infect, 2017, 145(2): 368-378. doi: 10.1017/S0950268816002338 [19] TRACHT S M, DEL VALLE S Y, HYMAN J M. Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A(H1N1)[J]. PLoS One, 2010, 5(2): e9018. doi: 10.1371/journal.pone.0009018 [20] COBURN B J, WAGNER B G, BLOWER S. Modeling influenza epidemics and pandemics: insights into the future of swine flu(H1N1)[J]. BMC Med, 2009(7): 30. DOI: 10.1186/1741-7015-7-30. [21] FRASER C, DONNELLY C A, CAUCHEMEZ S, et al. Pandemic potential of a strain of influenza A(H1N1): early findings[J]. Science, 2009(5934): 1557-1561. DOI: 10.1126/science.1176062. [22] 陈田木, 陈秋萍, 谢强明, 等. 学校乙型流感暴发的传播模式研究[J]. 医学动物防制, 2012, 28(2): 129-131. doi: 10.3969/j.issn.1003-6245.2012.02.005CHEN T M, CHEN Q P, XIE Q M, et al. Study on space-time outbreak transmission pattern of influenza B in school[J]. J Med Pest Control, 2012, 28(2): 129-131. doi: 10.3969/j.issn.1003-6245.2012.02.005 -

计量
- 文章访问数: 542
- HTML全文浏览量: 244
- PDF下载量: 59
- 被引次数: 0