Advances in biomarkers of transcriptomics, proteomics and metabolomics and childhood obesity
-
摘要: 组学生物标志物有助于提高人们对肥胖病因及其与慢性病联系的认识, 文章概述了基于转录组学、蛋白组学、代谢组学肥胖表型生物标志物的最新进展, 加深了对肥胖病因及干预效果异质性的理解; 此外, 将组学生物标志物应用到儿童肥胖精准防控中, 不同组学生物标志物可以提高"肥胖"一词的精确度, 并有助于早期检测具有风险特征的特定生物标志物, 以便实现儿童肥胖从"一刀切"的防控策略转变为在肥胖发生发展过程中个性化的防治方案。Abstract: Biomarkers could improve the understanding of the causes of obesity and its association with chronic diseases for people.The purpose of the review is to summarize recent advances in transcriptomic, proteomic, and metabolomic phenotypic biomarkers of obesity in order to deepen the understanding of the etiology of obesity and its metabolic consequences.In the precise prevention and control of childhood obesity, different groups of biomarkers can improve the accuracy of the word "obesity" and help early detection of specific biomarkers with risk characteristics, so as to realize the transformation of childhood obesity from a one-size-fits-all prevention and control strategy to a personalized prevention and control plan during the development of obesity.
-
Key words:
- Genomics /
- Proteomics /
- Biological markers /
- Obesity /
- Child
1) 利益冲突声明 所有作者声明无利益冲突。 -
[1] VORUGANTI V S. Precision nutrition: recent advances in obesity[J]. Physiology (Bethesda), 2023, 38(1). DOI: 10.1152/physiol.00014.2022. [2] LISTER N B, BAUR L A. Child and adolescent obesity[J]. Nat Rev Dis Primers, 2023, 9(1): 24. doi: 10.1038/s41572-023-00435-4 [3] SOHN Y B. Genetic obesity: an update with emerging therapeutic approaches[J]. Ann Pediatr Endocrinol Metab, 2022, 27(3): 169-175. doi: 10.6065/apem.2244188.094 [4] BERGMAN M, ABDUL-GHANI M, DEFRONZO R A, et al. Review of methods for detecting glycemic disorders[J]. Diabetes Res Clin Pract, 2020, 165: 108233. doi: 10.1016/j.diabres.2020.108233 [5] WANG F, ZHENG J, CHENG J, et al. Personalized nutrition: a review of genotype-based nutritional supplementation[J]. Front Nutr, 2022, 9: 992986. doi: 10.3389/fnut.2022.992986 [6] WOLDEMARIAM S, DORNER T E, WIESINGER T, et al. Multi-omics approaches for precision obesity management: potentials and limitations of omics in precision prevention, treatment and risk reduction of obesity[J]. Wien Klin Wochenschr, 2023, 135(5/6): 113-124. [7] SALIM F, MIZUTANI S, ZOLFO M, et al. Recent advances of machine learning applications in human gut microbiota study: from observational analysis toward causal inference and clinical intervention[J]. Curr Opinion Biotechnol, 2023, 79: 102884. doi: 10.1016/j.copbio.2022.102884 [8] ALEKSANDROVA K, EGEA RODRIGUES C, FLOEGEL A, et al. Omics biomarkers in obesity: novel etiological insights and targets for precision prevention[J]. Curr Obes Rep, 2020, 9(3): 219-230. doi: 10.1007/s13679-020-00393-y [9] PORRO M, KUNDROTAITE E, MELLOR D D. A narrative review of the functional components of humanbreast milk and their potential to modulate the gut microbiome, the consideration of maternal and child characteristics, and confounders of breastfeeding, and their impact on risk of obesity later in life[J]. Nutr Rev, 2023, 81(5): 597-609. doi: 10.1093/nutrit/nuac072 [10] MOHAMMADI-SHEMIRANI P, SOOD T. From Omics to multi-omics technologies: the discovery of novel causal mediators[J]. Curr Atheroscler Rep, 2023, 25(2): 55-65. doi: 10.1007/s11883-022-01078-8 [11] SANCHEZ J, PICÓ C, AHRENS W, et al. Transcriptome analysis in blood cells from children reveals potential early biomarkers of metabolic alterations[J]. Int J Obes (Lond), 2017, 41(10): 1481-1488. doi: 10.1038/ijo.2017.132 [12] RAMOS-LOPEZ O, RIEZU-BOJ J I, MILAGRO F I. Genetic and epigenetic nutritional interactions influencing obesity risk and adiposity outcomes[J]. Curr Opin Clin Nutr Metab Care, 2022, 25(4): 235-240. doi: 10.1097/MCO.0000000000000836 [13] THOMOU T, MORI M A, DREYFUSS J M, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues[J]. Nature, 2017, 542(7642): 450-455. doi: 10.1038/nature21365 [14] MATVEEV G A, KHROMOVA N V, ZASYPKIN G G, et al. Tissue and circulating microRNAs 378 and 142 as biomarkers of obesity and its treatment response[J]. Int J Mol Sci, 2023, 24(17): 13426. doi: 10.3390/ijms241713426 [15] ASSMANN T S, CUEVAS-SIERRA A. Comprehensive analysis reveals novel interactions between circulating microRNAs and gut microbiota composition in human obesity[J]. Int J Mol Sci, 2020, 21(24): 9509. doi: 10.3390/ijms21249509 [16] ORTIZ-DOSAL A, RODIL-GARCÍA P, SALAZAR-OLIVO L A. Circulating microRNAs in human obesity: a systematic review[J]. Biomarkers, 2019, 24(6): 499-509. doi: 10.1080/1354750X.2019.1606279 [17] WEI S, DU M, JIANG Z, et al. Long noncoding RNAs in regulating adipogenesis: new RNAs shed lights on obesity[J]. Cell Mol Life Sci, 2016, 73(10): 2079-2087. doi: 10.1007/s00018-016-2169-2 [18] COMINETTI O, NUÑEZ GALINDO A, CORTHÉSY J, et al. Obesity shows preserved plasma proteome in large independent clinical cohorts[J]. Sci Rep, 2018, 8(1): 16981. doi: 10.1038/s41598-018-35321-7 [19] DROUARD G, HAGENBEEK F A, WHIPP A M, et al. Longitudinal multi-omics study reveals common etiology underlying association between plasma proteome and BMI trajectories in adolescent and young adult twins[J]. BMC Med, 2023, 21(1): 508. doi: 10.1186/s12916-023-03198-7 [20] RANGEL-HUERTA O D, PASTOR-VILLAESCUSA B. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies[J]. Metabolomics, 2019, 15(6): 93. doi: 10.1007/s11306-019-1553-y [21] ISGANAITIS E, RIFAS-SHIMAN S L, OKEN E, et al. Associations of cord blood metabolites with early childhood obesity risk[J]. Int J Obes(Lond), 2015, 39(7): 1041-1048. doi: 10.1038/ijo.2015.39 [22] WIKLUND P K, PEKKALA S, AUTIO R, et al. Serum metabolic profiles in overweight and obese women with and without metabolic syndrome[J]. Diabetol Metab Syndr, 2014, 6(1): 40. doi: 10.1186/1758-5996-6-40 [23] GANNON N P, SCHNUCK J K, VAUGHAN R A. BCAA metabolism and insulin sensitivity-dysregulated by metabolic status?[J]. Mol Nutr Food Res, 2018, 62(6): e1700756. doi: 10.1002/mnfr.201700756 [24] NAGAO K, KIMURA T. Use of plasma-free amino acids as biomarkers for detecting and predicting disease risk[J]. Nutr Rev, 2020, 78(12 Suppl 2): 79-85. [25] YAMAGUCHI N, MAHBUB M H, TAKAHASHI H, et al. Plasma free amino acid profiles evaluate risk of metabolic syndrome, diabetes, dyslipidemia, and hypertension in a large Asian population[J]. Environ Health Prev Med, 2017, 22(1): 35. doi: 10.1186/s12199-017-0642-7 [26] SIDDIK M A B, SHIN A C. Recent progress on branched-chain amino acids in obesity, diabetes, and beyond[J]. Endocrinol Metab (Seoul), 2019, 34(3): 234-246. doi: 10.3803/EnM.2019.34.3.234 [27] MORAN-RAMOS S, OCAMPO-MEDINA E, GUTIERREZ-AGUILAR R. An amino acid signature associated with obesity predicts 2-year risk of hypertriglyceridemia in school-age children[J]. Sci Rep, 2017, 7(1): 5607. doi: 10.1038/s41598-017-05765-4 [28] MCCORMACK S E, SHAHAM O, MCCARTHY M A, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents[J]. Pediatr Obes, 2013, 8(1): 52-61. doi: 10.1111/j.2047-6310.2012.00087.x [29] LIANG Y, PAN C, YIN T, et al. Branched-chain amino acid accumulation fuels the senescence-associated secretory phenotype[J]. Adv Sci (Weinh), 2024, 11(2): e2303489. doi: 10.1002/advs.202303489 [30] BLOOMGARDEN Z. Diabetes and branched-chain amino acids: what is the link?[J]. J Diabetes, 2018, 10(5): 350-352. doi: 10.1111/1753-0407.12645 [31] RIGAMONTI A E, POLLEDRI E, FAVERO C, et al. Metabolomic profiling of Prader-Willi syndrome compared with essential obesity[J]. Front Endocrinol (Lausanne), 2024, 15: 1386265. doi: 10.3389/fendo.2024.1386265 [32] PIENING B D, ZHOU W, CONTREPOIS K, et al. Integrative personal omics profiles during periods of weight gain and loss[J]. Cell systems, 2018, 6(2): 157-170. e158. doi: 10.1016/j.cels.2017.12.013 [33] MARCO-RAMELL A, TULIPANI S, PALAU-RODRIGUEZ M, et al. Untargeted profiling of concordant/discordant phenotypes of high insulin resistance and obesity to predict the risk of developing diabetes[J]. J Proteome Res, 2018, 17(7): 2307-2317. doi: 10.1021/acs.jproteome.7b00855 [34] FLOEGEL A, WIENTZEK A, BACHLECHNER U, et al. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study[J]. Int J Obes, 2014, 38(11): 1388-1396. doi: 10.1038/ijo.2014.39 [35] PERNG W, GILLMAN M W, FLEISCH A F, et al. Metabolomic profiles and childhood obesity[J]. Obesity, 2014, 22(12): 2570-2578. doi: 10.1002/oby.20901 [36] PERNG W, RIFAS-SHIMAN S L, HIVERT M F, et al. Branched chain amino acids, androgen hormones, and metabolic risk across early adolescence: a prospective study in project viva[J]. Obesity, 2018, 26(5): 916-926. doi: 10.1002/oby.22164 [37] PERNG W, TANG L, SONG P X K, et al. Metabolomic profiles and development of metabolic risk during the pubertal transition: a prospective study in the ELEMENT project[J]. Pediatr Res, 2019, 85(3): 262-268. doi: 10.1038/s41390-018-0195-5 [38] LIU T, FAN Y, ZHANG Q, et al. The combination of metabolic syndrome and inflammation increased the risk of colorectal cancer[J]. Inflamm Res, 2022, 71(7/8): 899-909. [39] ABIRI B, VALIZADEH M, AMINI S, et al. Risk factors, cutoff points, and definition of metabolically healthy/unhealthy obesity in children and adolescents: a scoping review of the literature[J]. Obes Rev, 2023, 24(5): e13548. doi: 10.1111/obr.13548 [40] VUKOVIC R, DOS SANTOS T J, YBARRA M, et al. Children with metabolically healthy obesity: a review[J]. Front Endocrinol (Lausanne), 2019, 10: 865. doi: 10.3389/fendo.2019.00865 [41] TELLE-HANSEN V H, CHRISTENSEN J J, FORMO G A, et al. A comprehensive metabolic profiling of the metabolically healthy obesity phenotype[J]. Lipids Health Dis, 2020, 19(1): 90. doi: 10.1186/s12944-020-01273-z [42] SUMINSKA M, PODGÓRSKI R, FICHNA P, et al. Steroid metabolism in children and adolescents with obesity and insulin resistance: altered SRD5A and 20α/20βHSD activity[J]. Front Endocrinol (Lausanne), 2021, 12: 759971. doi: 10.3389/fendo.2021.759971 [43] SUMINSKA M, PODGÓRSKI R. The impact of obesity on the excretion of steroid metabolites in boys and girls: a comparison with normal-weight children[J]. Nutrients, 2023, 15(7): 1734. doi: 10.3390/nu15071734 [44] GAWLIK A, SHMOISH M, HARTMANN M F, et al. Steroid metabolomic disease signature of nonsyndromic childhood obesity[J]. J Clin Endocrinol Metab, 2016, 101(11): 4329-4337. doi: 10.1210/jc.2016-1754 [45] KIM M J, YANG H J, KIM J H, et al. Obesity-related metabolomic analysis of human subjects in black soybean peptide intervention study by ultraperformance liquid chromatography and quadrupole-time-of-flight mass spectrometry[J]. J Obes, 2013, 2013: 874981. [46] LOKHOV P G, BALASHOVA E E. Clinical blood metabogram: application to overweight and obese patients[J]. Metabolites, 2023, 13(7): 798. doi: 10.3390/metabo13070798 [47] KIRCHBERG F F, HARDER U, WEBER M, et al. Dietary protein intake affects amino acid and acylcarnitine metabolism in infants aged 6 months[J]. J Clin Endocrinol Metab, 2015, 100(1): 149-158. doi: 10.1210/jc.2014-3157 [48] ROBINSON T N, ARMSTRONG S C. Treatment interventions for child and adolescent obesity: from evidence to recommendations to action[J]. JAMA, 2024, 332(3): 201-203. doi: 10.1001/jama.2024.11980 [49] DEFFAIN A, ALFARIS H, HAJJAR R, et al. Long-term follow-up of a cohort with post sleeve gastrectomy leaks: results of endoscopic treatment and salvage surgery[J]. Surg Endosc, 2023, 37(12): 9358-9365. doi: 10.1007/s00464-023-10386-2 [50] SUMMERS R, LEA J, EAST L. An exploration of extreme obesity and weight loss management for adults in rural, remote, and regional areas: a systematic review[J]. Contemp Nurse, 2024, 60(1): 54-66. doi: 10.1080/10376178.2024.2304712 [51] RECHE-GARCÍA C, PIERNAS C, GARCÍA-VIZCAÍNO E M, et al. Bariatric-metabolic surgery is the most effective intervention in reducing food addiction symptoms: a systematic review and Meta-analysis[J]. Obes Surg, 2024, 34(9): 3475-3492. doi: 10.1007/s11695-024-07107-6
点击查看大图
计量
- 文章访问数: 75
- HTML全文浏览量: 35
- PDF下载量: 18
- 被引次数: 0